摘要
Wear resistance is one of the properties that must be considered for maintaining the long-term functionality of artificial teeth in dental prostheses. This property can be altered by the method of tooth fabrication, the material, the chewing force, and the relationship to the antagonist tooth. This systematic review evaluated the wear resistance of artificial teeth obtained by the additive manufacturing method and aims to answer the question, "Do artificial teeth for dental prostheses obtained by additive manufacturing show wear resistance similar to prefabricated ones?" The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Checklist guidelines were followed with a customized search in Scopus, PubMed/Medline, Embase, Science Direct, and Google Scholar databases on August 30, 2023. The inclusion criteria were artificial teeth for dental prostheses in acrylic resin by additive manufacturing and comparing the wear resistance with conventional prefabricated teeth, in vitro and English studies, without time restriction. And excluded if 1) do not make artificial teeth by additive manufacturing or that were metal or ceramic teeth; 2) clinical trials, animal studies, review articles, case reports, letters to the editor, short communication, book chapters; 3) another language that is not English. The selection was in two steps, reading the titles and abstracts, followed by reading the selected studies in full. The risk of bias analysis was performed with the adaptation of the quasi-experimental studies tool by Joanna Briggs Institute. Four hundred and twelve articles were found in the databases, after the selection steps and application of eligibility criteria, 6 articles were included for qualitative data analysis and presented low risk of bias. For teeth obtained by additive manufacturing, 2 studies reported lower wear resistance, 2 studies had higher resistance, and 2 similar compared to prefabricated ones. Additive manufactured teeth compared to prefabricated teeth show influences on wear resistance due to differences in material composition, relationship to the antagonist's tooth, applied force, chewing cycles, and processing methods.