Automatic Segmentation of Liver Tumor from Multi-phase Contrast-Enhanced CT Images Using Cross-Phase Fusion Transformer

融合 相衬显微术 人工智能 分割 对比度(视觉) 计算机视觉 计算机科学 材料科学 放射科 医学 物理 光学 语言学 哲学
作者
Wei Zhang,Yuxi Tao,Wei Liang,Junjie Li,Yingjia Chen,Tengfei Song,Xiangyuan Ma,Yaqin Zhang
出处
期刊:IFMBE proceedings 卷期号:: 121-130
标识
DOI:10.1007/978-3-031-51455-5_15
摘要

Multi-phase contrast-enhanced CT images can provide abundant and complementary tumor information, and thus radiologists often use multi-phase images to assist in segmenting and diagnosing liver tumors. However, the current multi-stage liver tumor segmentation methods are based on convolutional neural networks (CNNs), which make them ineffective in extracting global information during the multi-phase information fusion process. In this study, we propose a novel multi-phase liver tumor segmentation approach using delayed phase images to aid in portal vein phase tumor segmentation. The proposed method employs a Transformer structure to extract both global information and local information of tumors, which contributes to the precise segmentation of tumor boundaries. More importantly, we design a cross-phase aggregator (CFA), which facilitates the bidirectional interaction of cross-phase features to take full advantage of the complementary information from multi-phase images. A dataset of 164 multi-phase abdominal CT scans was collected with Institutional Review Board approval to evaluate the performance of the proposed approach. The experimental results showed that the proposed approach can better utilize multi-phase information and is superior to several state-of-the-art methods. Ablation study is performed to further validate the effectiveness of each module in the proposed model. The proposed method has the potential to assist radiologists to locate more accurate liver tumors and improve their diagnosis efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助whale采纳,获得10
1秒前
CodeCraft应助依米zhang采纳,获得10
2秒前
无情修杰完成签到 ,获得积分10
2秒前
文静的牛排完成签到,获得积分10
3秒前
3秒前
顺心的千萍完成签到,获得积分10
4秒前
无花果应助聪慧的凝海采纳,获得10
5秒前
2316690509完成签到 ,获得积分10
5秒前
5秒前
20年单身狗完成签到,获得积分10
7秒前
陈诗羽完成签到,获得积分10
7秒前
cz发布了新的文献求助10
8秒前
皮卡丘比特应助lalala采纳,获得20
8秒前
爱听歌从蓉关注了科研通微信公众号
9秒前
香蕉觅云应助zh采纳,获得10
9秒前
10秒前
金金金完成签到,获得积分10
11秒前
12秒前
LONG发布了新的文献求助10
14秒前
红烧肉耶发布了新的文献求助10
15秒前
kirazou完成签到,获得积分10
15秒前
lwj完成签到,获得积分10
16秒前
21秒前
共享精神应助自觉的小凝采纳,获得10
25秒前
JamesPei应助琪求好运采纳,获得10
25秒前
26秒前
26秒前
26秒前
guard发布了新的文献求助10
26秒前
Sweety-完成签到 ,获得积分10
27秒前
27秒前
达拉崩吧完成签到,获得积分10
28秒前
童万明完成签到,获得积分20
29秒前
没烦恼完成签到,获得积分10
30秒前
zz完成签到 ,获得积分10
30秒前
Owen应助TingtingGZ采纳,获得10
30秒前
pomfret完成签到 ,获得积分10
32秒前
没烦恼发布了新的文献求助10
34秒前
童万明发布了新的文献求助10
34秒前
阳阳完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511