Automatic Segmentation of Liver Tumor from Multi-phase Contrast-Enhanced CT Images Using Cross-Phase Fusion Transformer

融合 相衬显微术 人工智能 分割 对比度(视觉) 计算机视觉 计算机科学 材料科学 放射科 医学 物理 光学 哲学 语言学
作者
Wei Zhang,Yuxi Tao,Wei Liang,Junjie Li,Yingjia Chen,Tengfei Song,Xiangyuan Ma,Yaqin Zhang
出处
期刊:IFMBE proceedings 卷期号:: 121-130
标识
DOI:10.1007/978-3-031-51455-5_15
摘要

Multi-phase contrast-enhanced CT images can provide abundant and complementary tumor information, and thus radiologists often use multi-phase images to assist in segmenting and diagnosing liver tumors. However, the current multi-stage liver tumor segmentation methods are based on convolutional neural networks (CNNs), which make them ineffective in extracting global information during the multi-phase information fusion process. In this study, we propose a novel multi-phase liver tumor segmentation approach using delayed phase images to aid in portal vein phase tumor segmentation. The proposed method employs a Transformer structure to extract both global information and local information of tumors, which contributes to the precise segmentation of tumor boundaries. More importantly, we design a cross-phase aggregator (CFA), which facilitates the bidirectional interaction of cross-phase features to take full advantage of the complementary information from multi-phase images. A dataset of 164 multi-phase abdominal CT scans was collected with Institutional Review Board approval to evaluate the performance of the proposed approach. The experimental results showed that the proposed approach can better utilize multi-phase information and is superior to several state-of-the-art methods. Ablation study is performed to further validate the effectiveness of each module in the proposed model. The proposed method has the potential to assist radiologists to locate more accurate liver tumors and improve their diagnosis efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助闪闪茉莉采纳,获得10
1秒前
hhh发布了新的文献求助10
2秒前
仁爱听露发布了新的文献求助10
3秒前
3秒前
小王同学搞学术完成签到,获得积分20
3秒前
Lau发布了新的文献求助10
3秒前
4秒前
叮当发布了新的文献求助10
4秒前
双生客发布了新的文献求助10
4秒前
小狗熊吖i完成签到,获得积分10
4秒前
4秒前
5秒前
blue完成签到,获得积分10
6秒前
彭于晏应助双生客采纳,获得10
7秒前
8秒前
PhH完成签到 ,获得积分10
8秒前
高兴的从梦完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
chanvze完成签到,获得积分10
12秒前
12秒前
脑洞疼应助985211采纳,获得10
12秒前
子衿青青发布了新的文献求助10
14秒前
斯文败类应助Vanessa采纳,获得10
14秒前
Yu应助丁丁峥采纳,获得10
16秒前
mmmm完成签到,获得积分10
16秒前
hhh发布了新的文献求助10
16秒前
静静地学习完成签到,获得积分10
17秒前
18秒前
CipherSage应助雪白发卡采纳,获得10
18秒前
syc应助藜藜藜在乎你采纳,获得10
19秒前
19秒前
20秒前
123完成签到,获得积分10
20秒前
霸气映之完成签到,获得积分10
21秒前
SYLH应助苗苗043采纳,获得20
22秒前
schen发布了新的文献求助30
23秒前
香蕉觅云应助原象采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226