Automatic Segmentation of Liver Tumor from Multi-phase Contrast-Enhanced CT Images Using Cross-Phase Fusion Transformer

融合 相衬显微术 人工智能 分割 对比度(视觉) 计算机视觉 计算机科学 材料科学 放射科 医学 物理 光学 哲学 语言学
作者
Wei Zhang,Yuxi Tao,Wei Liang,Junjie Li,Yingjia Chen,Tengfei Song,Xiangyuan Ma,Yaqin Zhang
出处
期刊:IFMBE proceedings 卷期号:: 121-130
标识
DOI:10.1007/978-3-031-51455-5_15
摘要

Multi-phase contrast-enhanced CT images can provide abundant and complementary tumor information, and thus radiologists often use multi-phase images to assist in segmenting and diagnosing liver tumors. However, the current multi-stage liver tumor segmentation methods are based on convolutional neural networks (CNNs), which make them ineffective in extracting global information during the multi-phase information fusion process. In this study, we propose a novel multi-phase liver tumor segmentation approach using delayed phase images to aid in portal vein phase tumor segmentation. The proposed method employs a Transformer structure to extract both global information and local information of tumors, which contributes to the precise segmentation of tumor boundaries. More importantly, we design a cross-phase aggregator (CFA), which facilitates the bidirectional interaction of cross-phase features to take full advantage of the complementary information from multi-phase images. A dataset of 164 multi-phase abdominal CT scans was collected with Institutional Review Board approval to evaluate the performance of the proposed approach. The experimental results showed that the proposed approach can better utilize multi-phase information and is superior to several state-of-the-art methods. Ablation study is performed to further validate the effectiveness of each module in the proposed model. The proposed method has the potential to assist radiologists to locate more accurate liver tumors and improve their diagnosis efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Eureka发布了新的文献求助10
1秒前
krislang完成签到,获得积分10
2秒前
九域发布了新的文献求助10
2秒前
Tutu完成签到,获得积分10
2秒前
蔡蔡蔡发布了新的文献求助10
3秒前
典雅的不悔完成签到,获得积分10
3秒前
代柔完成签到,获得积分10
3秒前
高兴凝安发布了新的文献求助20
4秒前
彬彬发布了新的文献求助10
4秒前
veeinne发布了新的文献求助10
5秒前
5秒前
椰椰应助千千采纳,获得10
5秒前
李天王发布了新的文献求助20
5秒前
lijia3发布了新的文献求助10
6秒前
6秒前
曲阁发布了新的文献求助20
6秒前
6秒前
CodeCraft应助苏言采纳,获得10
6秒前
6秒前
Gilana发布了新的文献求助10
7秒前
hao完成签到,获得积分10
7秒前
bkagyin应助Monster采纳,获得10
7秒前
白鸽鸽发布了新的文献求助10
8秒前
Kavin完成签到,获得积分10
8秒前
8秒前
8秒前
奋斗的雅柔完成签到 ,获得积分10
9秒前
虚心澜完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
xx发布了新的文献求助10
11秒前
11秒前
11秒前
cctv18应助ellieou采纳,获得30
11秒前
12秒前
顾矜应助穿运动裤的先生采纳,获得10
12秒前
Ava应助爱爱采纳,获得10
12秒前
王智慧完成签到,获得积分10
13秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3437978
求助须知:如何正确求助?哪些是违规求助? 3034940
关于积分的说明 8956547
捐赠科研通 2722913
什么是DOI,文献DOI怎么找? 1493651
科研通“疑难数据库(出版商)”最低求助积分说明 690318
邀请新用户注册赠送积分活动 686742