亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning From Human Educational Wisdom: A Student-Centered Knowledge Distillation Method

计算机科学 遗忘 人工智能 机器学习 课程 集合(抽象数据类型) 过程(计算) 心理学 教育学 哲学 语言学 程序设计语言 操作系统
作者
Shunzhi Yang,Jinfeng Yang,MengChu Zhou,Zhenhua Huang,Wei‐Shi Zheng,Xiong Yang,Jin Ren
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4188-4205 被引量:12
标识
DOI:10.1109/tpami.2024.3354928
摘要

Existing studies on knowledge distillation typically focus on teacher-centered methods, in which the teacher network is trained according to its own standards before transferring the learned knowledge to a student one. However, due to differences in network structure between the teacher and the student, the knowledge learned by the former may not be desired by the latter. Inspired by human educational wisdom, this paper proposes a Student-Centered Distillation (SCD) method that enables the teacher network to adjust its knowledge transfer according to the student network's needs. We implemented SCD based on various human educational wisdom, e.g., the teacher network identified and learned the knowledge desired by the student network on the validation set, and then transferred it to the latter through the training set. To address the problems of current deficiency knowledge, hard sample learning and knowledge forgetting faced by a student network in the learning process, we introduce and improve Proportional-Integral-Derivative (PID) algorithms from automation fields to make them effective in identifying the current knowledge required by the student network. Furthermore, we propose a curriculum learning-based fuzzy strategy and apply it to the proposed PID control algorithm, such that the student network in SCD can actively pay attention to the learning of challenging samples after with certain knowledge. The overall performance of SCD is verified in multiple tasks by comparing it with state-of-the-art ones. Experimental results show that our student-centered distillation method outperforms existing teacher-centered ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风趣的梦露完成签到 ,获得积分10
5秒前
一个西藏发布了新的文献求助10
6秒前
9秒前
雅雅完成签到 ,获得积分10
11秒前
16秒前
大个应助个性半山采纳,获得10
20秒前
搜集达人应助william采纳,获得10
24秒前
26秒前
Lieme_7完成签到,获得积分10
27秒前
28秒前
思源应助Simone采纳,获得10
28秒前
大乔发布了新的文献求助30
30秒前
个性半山发布了新的文献求助10
34秒前
34秒前
Zert发布了新的文献求助10
35秒前
40秒前
43秒前
Simone发布了新的文献求助10
44秒前
HTniconico完成签到 ,获得积分10
46秒前
48秒前
william发布了新的文献求助10
49秒前
琳io发布了新的文献求助10
52秒前
山野完成签到 ,获得积分10
53秒前
Jasper应助Harrison采纳,获得10
53秒前
55秒前
william完成签到,获得积分10
57秒前
kong发布了新的文献求助10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
neversay4ever完成签到 ,获得积分10
1分钟前
棠梨子完成签到,获得积分10
1分钟前
1分钟前
IdleDoc发布了新的文献求助10
1分钟前
琪凯定理发布了新的文献求助10
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
kong完成签到,获得积分10
1分钟前
传奇3应助壮观沉鱼采纳,获得10
1分钟前
酷波er应助IdleDoc采纳,获得10
1分钟前
哩哩完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345828
求助须知:如何正确求助?哪些是违规求助? 4480635
关于积分的说明 13946596
捐赠科研通 4378236
什么是DOI,文献DOI怎么找? 2405725
邀请新用户注册赠送积分活动 1398272
关于科研通互助平台的介绍 1370786