Product Redesign and Innovation Based on Online Reviews: A Multistage Combined Search Method

计算机科学 新产品开发 产品(数学) 竞争优势 二部图 图形 数据挖掘 知识管理 数据科学 理论计算机科学 营销 几何学 数学 业务
作者
Jindong Qin,Pan Zheng,Xiaojun Wang
出处
期刊:Informs Journal on Computing 卷期号:36 (3): 742-765 被引量:4
标识
DOI:10.1287/ijoc.2022.0333
摘要

Online reviews published on the e-commerce platform provide a new source of information for designers to develop new products. Past research on new product development (NPD) using user-generated textual data commonly focused solely on extracting and identifying product features to be improved. However, the competitive analysis of product features and more specific improvement strategies have not been explored deeply. This study fully uses the rich semantic attributes of online review texts and proposes a novel online review–driven modeling framework. This new approach can extract fine-grained product features; calculate their importance, performance, and competitiveness; and build a competitiveness network for each feature. As a result, decision making is assisted, and specific product improvement strategies are developed for NPD beyond existing modeling approaches in this domain. Specifically, online reviews are first classified into redesign- and innovation-related themes using a multiple embedding model, and the redesign and innovation product features can be extracted accordingly using a mutual information multilevel feature extraction method. Moreover, the importance and performance of features are calculated, and the competitiveness and competitiveness network of features are obtained through a personalized unidirectional bipartite graph algorithm. Finally, the importance performance competitiveness analysis plot is constructed, and the product improvement strategy is developed via a multistage combined search algorithm. Case studies and comparative experiments show the effectiveness of the proposed method and provide novel business insights for stakeholders, such as product providers, managers, and designers. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Project 72071151] and the Natural Science Foundation of Hubei Province, China [Grant 2023CFB712]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0333 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0333 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沫柠完成签到 ,获得积分10
刚刚
完美世界应助Ll采纳,获得10
1秒前
rubbertail完成签到,获得积分20
1秒前
黑大帅完成签到,获得积分10
1秒前
科研通AI5应助风中以菱采纳,获得10
2秒前
Lea完成签到,获得积分10
2秒前
3秒前
郑开司09发布了新的文献求助10
3秒前
minmin完成签到,获得积分10
3秒前
乐乐应助科研通管家采纳,获得10
4秒前
雪白问兰应助科研通管家采纳,获得50
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
难过的翎应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Hungrylunch应助科研通管家采纳,获得20
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Tong完成签到,获得积分0
5秒前
Cassie应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
撒啊完成签到,获得积分10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
小王不会看文献完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672