Product Redesign and Innovation Based on Online Reviews: A Multistage Combined Search Method

计算机科学 新产品开发 产品(数学) 竞争优势 二部图 图形 数据挖掘 知识管理 数据科学 理论计算机科学 营销 几何学 数学 业务
作者
Jindong Qin,Pan Zheng,Xiaojun Wang
出处
期刊:Informs Journal on Computing 卷期号:36 (3): 742-765 被引量:7
标识
DOI:10.1287/ijoc.2022.0333
摘要

Online reviews published on the e-commerce platform provide a new source of information for designers to develop new products. Past research on new product development (NPD) using user-generated textual data commonly focused solely on extracting and identifying product features to be improved. However, the competitive analysis of product features and more specific improvement strategies have not been explored deeply. This study fully uses the rich semantic attributes of online review texts and proposes a novel online review–driven modeling framework. This new approach can extract fine-grained product features; calculate their importance, performance, and competitiveness; and build a competitiveness network for each feature. As a result, decision making is assisted, and specific product improvement strategies are developed for NPD beyond existing modeling approaches in this domain. Specifically, online reviews are first classified into redesign- and innovation-related themes using a multiple embedding model, and the redesign and innovation product features can be extracted accordingly using a mutual information multilevel feature extraction method. Moreover, the importance and performance of features are calculated, and the competitiveness and competitiveness network of features are obtained through a personalized unidirectional bipartite graph algorithm. Finally, the importance performance competitiveness analysis plot is constructed, and the product improvement strategy is developed via a multistage combined search algorithm. Case studies and comparative experiments show the effectiveness of the proposed method and provide novel business insights for stakeholders, such as product providers, managers, and designers. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Project 72071151] and the Natural Science Foundation of Hubei Province, China [Grant 2023CFB712]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0333 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0333 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山谷与花发布了新的文献求助10
1秒前
zhuangzhuang发布了新的文献求助10
1秒前
马里奥发布了新的文献求助10
1秒前
呢喃私语发布了新的文献求助10
2秒前
2秒前
xiezhuren发布了新的文献求助10
2秒前
3秒前
3秒前
玖爱完成签到,获得积分10
4秒前
5秒前
完美世界应助uu采纳,获得10
5秒前
JH发布了新的文献求助10
6秒前
钰c完成签到,获得积分10
6秒前
Fei关注了科研通微信公众号
7秒前
VV发布了新的文献求助10
8秒前
繁星长明发布了新的文献求助10
8秒前
8秒前
大个应助白居易采纳,获得10
8秒前
camille完成签到,获得积分10
9秒前
科研通AI6应助bcl采纳,获得10
9秒前
Ava应助zhuangzhuang采纳,获得10
9秒前
小马甲应助曾经的青槐采纳,获得10
12秒前
科研通AI6应助ddddddd采纳,获得10
13秒前
研友_VZG7GZ应助风中的丝袜采纳,获得10
14秒前
内向苡发布了新的文献求助10
14秒前
wsy发布了新的文献求助10
15秒前
zhuangzhuang完成签到,获得积分10
16秒前
18秒前
寒生完成签到,获得积分10
18秒前
幸福老六完成签到,获得积分10
18秒前
20秒前
dadadaniu发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
JH完成签到,获得积分10
22秒前
幸福老六发布了新的文献求助10
23秒前
WBTT完成签到,获得积分10
23秒前
成就凡双应助wsy采纳,获得10
23秒前
23秒前
淡然的芷荷完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838