Deep learning algorithm applied to plain CT images to identify superior mesenteric artery abnormalities

医学 形状记忆合金* 队列 肠系膜上动脉 放射科 曲线下面积 核医学 算法 内科学 计算机科学
作者
Junhao Mei,Hui Yan,Zheyu Tang,Zeyu Piao,Yuan Yuan,Yang Dou,Haobo Su,Chunfeng Hu,Mingzhu Meng,Zhongzhi Jia
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:173: 111388-111388 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111388
摘要

Atypical presentations, lack of biomarkers, and low sensitivity of plain CT can delay the diagnosis of superior mesenteric artery (SMA) abnormalities, resulting in poor clinical outcomes. Our study aims to develop a deep learning (DL) model for detecting SMA abnormalities in plain CT and evaluate its performance in comparison with a clinical model and radiologist assessment.A total of 1048 patients comprised the internal (474 patients with SMA abnormalities, 474 controls) and external testing (50 patients with SMA abnormalities, 50 controls) cohorts. The internal cohort was divided into the training cohort (n = 776), validation cohort (n = 86), and internal testing cohort (n = 86). A total of 5 You Only Look Once version 8 (YOLOv8)-based DL submodels were developed, and the performance of the optimal submodel was compared with that of a clinical model and of experienced radiologists.Of the submodels, YOLOv8x had the best performance. The area under the curve (AUC) of the YOLOv8x submodel was higher than that of the clinical model (internal test set: 0.990 vs 0.878, P =.002; external test set: 0.967 vs 0.912, P =.140) and that of all radiologists (P <.001). The YOLOv8x submodel, when compared with radiologist assessment, demonstrated higher sensitivity (internal test set: 100.0 % vs 70.7 %, P =.002; external test set: 96.0 % vs 68.8 %, P <.001) and specificity (internal test set: 90.7 % vs 66.0 %, P =.025; external test set: = 88.0 % vs 66.0 %, P <.001).Using plain CT images, YOLOv8x was able to efficiently identify cases of SMA abnormalities. This could potentially improve early diagnosis accuracy and thus improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助笨笨凡松采纳,获得10
1秒前
2秒前
3秒前
3秒前
CipherSage应助zhuojiu采纳,获得10
5秒前
5秒前
大闲鱼铭一完成签到 ,获得积分10
5秒前
哦哦哦完成签到,获得积分10
6秒前
7秒前
繁荣的从露完成签到,获得积分10
8秒前
9秒前
啊喔完成签到,获得积分20
10秒前
慕青应助jack采纳,获得10
11秒前
12秒前
团子发布了新的文献求助10
13秒前
13秒前
闲之野鹤完成签到,获得积分10
14秒前
健忘向露关注了科研通微信公众号
14秒前
wy.he应助易安采纳,获得10
15秒前
H_完成签到 ,获得积分10
16秒前
Lesley完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
甜甜奇迹发布了新的文献求助10
19秒前
完美世界应助十分喜欢采纳,获得10
19秒前
21秒前
keep完成签到 ,获得积分10
21秒前
科研通AI6应助啊喔采纳,获得10
21秒前
24秒前
26秒前
浮游应助丝竹丛中墨未干采纳,获得10
27秒前
灿灿发布了新的文献求助20
28秒前
Jie完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
上官若男应助Cyuan采纳,获得10
30秒前
32秒前
32秒前
甜甜奇迹完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759