Deep learning algorithm applied to plain CT images to identify superior mesenteric artery abnormalities

医学 形状记忆合金* 队列 肠系膜上动脉 放射科 曲线下面积 核医学 算法 内科学 计算机科学
作者
Junhao Mei,Hui Yan,Zheyu Tang,Zeyu Piao,Yuan Yuan,Yang Dou,Haobo Su,Chunfeng Hu,Mingzhu Meng,Zhongzhi Jia
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:173: 111388-111388 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111388
摘要

Atypical presentations, lack of biomarkers, and low sensitivity of plain CT can delay the diagnosis of superior mesenteric artery (SMA) abnormalities, resulting in poor clinical outcomes. Our study aims to develop a deep learning (DL) model for detecting SMA abnormalities in plain CT and evaluate its performance in comparison with a clinical model and radiologist assessment.A total of 1048 patients comprised the internal (474 patients with SMA abnormalities, 474 controls) and external testing (50 patients with SMA abnormalities, 50 controls) cohorts. The internal cohort was divided into the training cohort (n = 776), validation cohort (n = 86), and internal testing cohort (n = 86). A total of 5 You Only Look Once version 8 (YOLOv8)-based DL submodels were developed, and the performance of the optimal submodel was compared with that of a clinical model and of experienced radiologists.Of the submodels, YOLOv8x had the best performance. The area under the curve (AUC) of the YOLOv8x submodel was higher than that of the clinical model (internal test set: 0.990 vs 0.878, P =.002; external test set: 0.967 vs 0.912, P =.140) and that of all radiologists (P <.001). The YOLOv8x submodel, when compared with radiologist assessment, demonstrated higher sensitivity (internal test set: 100.0 % vs 70.7 %, P =.002; external test set: 96.0 % vs 68.8 %, P <.001) and specificity (internal test set: 90.7 % vs 66.0 %, P =.025; external test set: = 88.0 % vs 66.0 %, P <.001).Using plain CT images, YOLOv8x was able to efficiently identify cases of SMA abnormalities. This could potentially improve early diagnosis accuracy and thus improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯绿蓉发布了新的文献求助30
1秒前
乐观依云发布了新的文献求助10
1秒前
ding应助闪电爱学习采纳,获得10
1秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
2秒前
陈木子完成签到,获得积分10
3秒前
hxh发布了新的文献求助10
3秒前
3秒前
3秒前
积极的夜蕾完成签到,获得积分10
4秒前
李爱国应助hai采纳,获得10
4秒前
沁柔发布了新的文献求助10
4秒前
韩子云发布了新的文献求助10
5秒前
Grinde发布了新的文献求助10
5秒前
6秒前
浮游应助陈木子采纳,获得10
6秒前
的风格发布了新的文献求助10
6秒前
6秒前
晴空万里完成签到 ,获得积分10
7秒前
8秒前
9秒前
10秒前
快乐映秋发布了新的文献求助10
10秒前
柠溪完成签到 ,获得积分10
10秒前
11秒前
Demon发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
星辰大海应助晴朗采纳,获得10
14秒前
14秒前
15秒前
铃儿响叮当完成签到 ,获得积分10
16秒前
明亮元柏发布了新的文献求助30
16秒前
16秒前
Tting发布了新的文献求助30
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694525
求助须知:如何正确求助?哪些是违规求助? 5097567
关于积分的说明 15213869
捐赠科研通 4851086
什么是DOI,文献DOI怎么找? 2602107
邀请新用户注册赠送积分活动 1554007
关于科研通互助平台的介绍 1511898