Deep learning algorithm applied to plain CT images to identify superior mesenteric artery abnormalities

医学 形状记忆合金* 队列 肠系膜上动脉 放射科 曲线下面积 核医学 算法 内科学 计算机科学
作者
Junhao Mei,Hui Yan,Zheyu Tang,Zeyu Piao,Yuan Yuan,Yang Dou,Haobo Su,Chunfeng Hu,Mingzhu Meng,Zhongzhi Jia
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:173: 111388-111388 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111388
摘要

Atypical presentations, lack of biomarkers, and low sensitivity of plain CT can delay the diagnosis of superior mesenteric artery (SMA) abnormalities, resulting in poor clinical outcomes. Our study aims to develop a deep learning (DL) model for detecting SMA abnormalities in plain CT and evaluate its performance in comparison with a clinical model and radiologist assessment.A total of 1048 patients comprised the internal (474 patients with SMA abnormalities, 474 controls) and external testing (50 patients with SMA abnormalities, 50 controls) cohorts. The internal cohort was divided into the training cohort (n = 776), validation cohort (n = 86), and internal testing cohort (n = 86). A total of 5 You Only Look Once version 8 (YOLOv8)-based DL submodels were developed, and the performance of the optimal submodel was compared with that of a clinical model and of experienced radiologists.Of the submodels, YOLOv8x had the best performance. The area under the curve (AUC) of the YOLOv8x submodel was higher than that of the clinical model (internal test set: 0.990 vs 0.878, P =.002; external test set: 0.967 vs 0.912, P =.140) and that of all radiologists (P <.001). The YOLOv8x submodel, when compared with radiologist assessment, demonstrated higher sensitivity (internal test set: 100.0 % vs 70.7 %, P =.002; external test set: 96.0 % vs 68.8 %, P <.001) and specificity (internal test set: 90.7 % vs 66.0 %, P =.025; external test set: = 88.0 % vs 66.0 %, P <.001).Using plain CT images, YOLOv8x was able to efficiently identify cases of SMA abnormalities. This could potentially improve early diagnosis accuracy and thus improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助大导师采纳,获得10
刚刚
机器猫nzy完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
福团团完成签到,获得积分10
2秒前
lplmid完成签到,获得积分10
3秒前
科研通AI2S应助ycxlb采纳,获得10
3秒前
Wittig完成签到,获得积分10
4秒前
wwwwwei完成签到,获得积分10
4秒前
姜WIFI发布了新的文献求助10
5秒前
鸽子5359发布了新的文献求助10
5秒前
lplmid发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
彭于晏应助完美的流沙采纳,获得10
8秒前
现代豪完成签到,获得积分10
8秒前
10秒前
上官若男应助可靠的凝梦采纳,获得10
10秒前
自信战斗机完成签到,获得积分10
10秒前
Lee完成签到,获得积分10
11秒前
11秒前
NexusExplorer应助bird采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
脑洞疼应助www采纳,获得10
15秒前
WSYang完成签到,获得积分10
15秒前
16秒前
Wonder罗发布了新的文献求助10
16秒前
大导师发布了新的文献求助10
17秒前
zz完成签到,获得积分10
17秒前
科研通AI2S应助雪烟飞扬采纳,获得10
19秒前
19秒前
22秒前
22秒前
22秒前
23秒前
健忘尔安发布了新的文献求助10
23秒前
可爱的函函应助千里采纳,获得10
24秒前
FIN驳回了Mufreh应助
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778513
求助须知:如何正确求助?哪些是违规求助? 5641999
关于积分的说明 15449665
捐赠科研通 4910179
什么是DOI,文献DOI怎么找? 2642469
邀请新用户注册赠送积分活动 1590270
关于科研通互助平台的介绍 1544599