Deep learning algorithm applied to plain CT images to identify superior mesenteric artery abnormalities

医学 形状记忆合金* 队列 肠系膜上动脉 放射科 曲线下面积 核医学 算法 内科学 计算机科学
作者
Junhao Mei,Hui Yan,Zheyu Tang,Zeyu Piao,Yuan Yuan,Yang Dou,Haobo Su,Chunfeng Hu,Mingzhu Meng,Zhongzhi Jia
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:173: 111388-111388 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111388
摘要

Atypical presentations, lack of biomarkers, and low sensitivity of plain CT can delay the diagnosis of superior mesenteric artery (SMA) abnormalities, resulting in poor clinical outcomes. Our study aims to develop a deep learning (DL) model for detecting SMA abnormalities in plain CT and evaluate its performance in comparison with a clinical model and radiologist assessment.A total of 1048 patients comprised the internal (474 patients with SMA abnormalities, 474 controls) and external testing (50 patients with SMA abnormalities, 50 controls) cohorts. The internal cohort was divided into the training cohort (n = 776), validation cohort (n = 86), and internal testing cohort (n = 86). A total of 5 You Only Look Once version 8 (YOLOv8)-based DL submodels were developed, and the performance of the optimal submodel was compared with that of a clinical model and of experienced radiologists.Of the submodels, YOLOv8x had the best performance. The area under the curve (AUC) of the YOLOv8x submodel was higher than that of the clinical model (internal test set: 0.990 vs 0.878, P =.002; external test set: 0.967 vs 0.912, P =.140) and that of all radiologists (P <.001). The YOLOv8x submodel, when compared with radiologist assessment, demonstrated higher sensitivity (internal test set: 100.0 % vs 70.7 %, P =.002; external test set: 96.0 % vs 68.8 %, P <.001) and specificity (internal test set: 90.7 % vs 66.0 %, P =.025; external test set: = 88.0 % vs 66.0 %, P <.001).Using plain CT images, YOLOv8x was able to efficiently identify cases of SMA abnormalities. This could potentially improve early diagnosis accuracy and thus improve clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助wsgdhz采纳,获得10
2秒前
shidandan完成签到 ,获得积分10
2秒前
2秒前
3秒前
karry发布了新的文献求助10
3秒前
goku应助静好采纳,获得10
4秒前
64658应助joyee采纳,获得20
4秒前
Terry完成签到,获得积分10
5秒前
5秒前
Birdy发布了新的文献求助10
6秒前
asilamu完成签到,获得积分20
6秒前
曼凡完成签到,获得积分10
6秒前
6秒前
7秒前
徐一铭完成签到,获得积分10
8秒前
能量球发布了新的文献求助10
9秒前
铁柱xh完成签到 ,获得积分10
9秒前
沉静沛凝完成签到,获得积分10
9秒前
10秒前
deswin完成签到,获得积分10
10秒前
漂亮萝莉完成签到,获得积分10
10秒前
嗯嗯嗯嗯发布了新的文献求助10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
子车茗应助科研通管家采纳,获得20
12秒前
12秒前
爆米花应助张豪杰采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
俊逸的绿竹完成签到,获得积分20
13秒前
沉静沛凝发布了新的文献求助10
13秒前
魏俏红完成签到,获得积分10
13秒前
复杂的薯片完成签到,获得积分10
13秒前
TY发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316