Prognostic and predictive value of super-enhancer-derived signatures for survival and lung metastasis in osteosarcoma

骨肉瘤 预测值 转移 医学 肿瘤科 价值(数学) 癌症研究 内科学 计算机科学 癌症 机器学习
作者
Guoquan Huang,Xuelin Zhang,Yongan Xu,Shuo Chen,Qinghua Cao,Weihai Liu,Yiwei Fu,Qiang Jia,Jing Shen,Junqiang Yin,Jiajun Zhang
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-04902-8
摘要

Abstract Background Risk stratification and personalized care are crucial in managing osteosarcoma due to its complexity and heterogeneity. However, current prognostic prediction using clinical variables has limited accuracy. Thus, this study aimed to explore potential molecular biomarkers to improve prognostic assessment. Methods High-throughput inhibitor screening of 150 compounds with broad targeting properties was performed and indicated a direction towards super-enhancers (SEs). Bulk RNA-seq, scRNA-seq, and immunohistochemistry (IHC) were used to investigate SE-associated gene expression profiles in osteosarcoma cells and patient tissue specimens. Data of 212 osteosarcoma patients who received standard treatment were collected and randomized into training and validation groups for retrospective analysis. Prognostic signatures and nomograms for overall survival (OS) and lung metastasis-free survival (LMFS) were developed using Cox regression analyses. The discriminatory power, calibration, and clinical value of nomograms were evaluated. Results High-throughput inhibitor screening showed that SEs significantly contribute to the oncogenic transcriptional output in osteosarcoma. Based on this finding, focus was given to 10 SE-associated genes with distinct characteristics and potential oncogenic function. With multi-omics approaches, the hyperexpression of these genes was observed in tumor cell subclusters of patient specimens, which were consistently correlated with poor outcomes and rapid metastasis, and the majority of these identified SE-associated genes were confirmed as independent risk factors for poor outcomes. Two molecular signatures were then developed to predict survival and occurrence of lung metastasis: the SE-derived OS-signature (comprising LACTB , CEP55 , SRSF3 , TCF7L2 , and FOXP1 ) and the SE-derived LMFS-signature (comprising SRSF3 , TCF7L2 , FOXP1 , and APOLD1 ). Both signatures significantly improved prognostic accuracy beyond conventional clinical factors. Conclusions Oncogenic transcription driven by SEs exhibit strong associations with osteosarcoma outcomes. The SE-derived signatures developed in this study hold promise as prognostic biomarkers for predicting OS and LMFS in patients undergoing standard treatments. Integrative prognostic models that combine conventional clinical factors with these SE-derived signatures demonstrate substantially improved accuracy, and have the potential to facilitate patient counseling and individualized management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
指导灰应助科研通管家采纳,获得30
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
wwz应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
开放的大侠完成签到,获得积分10
1秒前
乐乐应助ikki采纳,获得10
2秒前
尹文发布了新的文献求助10
2秒前
易清华完成签到 ,获得积分10
3秒前
英姑应助雪白的藏花采纳,获得10
3秒前
俭朴的世立完成签到,获得积分10
5秒前
文艺鞋垫发布了新的文献求助20
5秒前
求助123完成签到,获得积分10
10秒前
10秒前
雪白的藏花完成签到,获得积分20
11秒前
肉丸完成签到 ,获得积分10
11秒前
拾柒关注了科研通微信公众号
13秒前
Pjmeng发布了新的文献求助10
13秒前
14秒前
14秒前
zhenhong完成签到,获得积分10
17秒前
FashionBoy应助求助123采纳,获得30
18秒前
坚定白筠完成签到 ,获得积分10
19秒前
星辰大海应助Serein采纳,获得10
20秒前
朴实香露发布了新的文献求助10
20秒前
24秒前
sunnyexon完成签到 ,获得积分10
26秒前
28秒前
许可发布了新的文献求助10
28秒前
尹文完成签到,获得积分20
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023