Prognostic and predictive value of super-enhancer-derived signatures for survival and lung metastasis in osteosarcoma

骨肉瘤 预测值 转移 医学 肿瘤科 价值(数学) 癌症研究 内科学 计算机科学 癌症 机器学习
作者
Guoquan Huang,Xuelin Zhang,Yongan Xu,Shuo Chen,Qinghua Cao,Weihai Liu,Yiwei Fu,Qiang Jia,Jing Shen,Junqiang Yin,Jiajun Zhang
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-04902-8
摘要

Abstract Background Risk stratification and personalized care are crucial in managing osteosarcoma due to its complexity and heterogeneity. However, current prognostic prediction using clinical variables has limited accuracy. Thus, this study aimed to explore potential molecular biomarkers to improve prognostic assessment. Methods High-throughput inhibitor screening of 150 compounds with broad targeting properties was performed and indicated a direction towards super-enhancers (SEs). Bulk RNA-seq, scRNA-seq, and immunohistochemistry (IHC) were used to investigate SE-associated gene expression profiles in osteosarcoma cells and patient tissue specimens. Data of 212 osteosarcoma patients who received standard treatment were collected and randomized into training and validation groups for retrospective analysis. Prognostic signatures and nomograms for overall survival (OS) and lung metastasis-free survival (LMFS) were developed using Cox regression analyses. The discriminatory power, calibration, and clinical value of nomograms were evaluated. Results High-throughput inhibitor screening showed that SEs significantly contribute to the oncogenic transcriptional output in osteosarcoma. Based on this finding, focus was given to 10 SE-associated genes with distinct characteristics and potential oncogenic function. With multi-omics approaches, the hyperexpression of these genes was observed in tumor cell subclusters of patient specimens, which were consistently correlated with poor outcomes and rapid metastasis, and the majority of these identified SE-associated genes were confirmed as independent risk factors for poor outcomes. Two molecular signatures were then developed to predict survival and occurrence of lung metastasis: the SE-derived OS-signature (comprising LACTB , CEP55 , SRSF3 , TCF7L2 , and FOXP1 ) and the SE-derived LMFS-signature (comprising SRSF3 , TCF7L2 , FOXP1 , and APOLD1 ). Both signatures significantly improved prognostic accuracy beyond conventional clinical factors. Conclusions Oncogenic transcription driven by SEs exhibit strong associations with osteosarcoma outcomes. The SE-derived signatures developed in this study hold promise as prognostic biomarkers for predicting OS and LMFS in patients undergoing standard treatments. Integrative prognostic models that combine conventional clinical factors with these SE-derived signatures demonstrate substantially improved accuracy, and have the potential to facilitate patient counseling and individualized management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
没有答案发布了新的文献求助10
刚刚
luchen发布了新的文献求助10
1秒前
jbq完成签到,获得积分10
1秒前
机智的醉山完成签到,获得积分10
1秒前
渺渺完成签到 ,获得积分10
1秒前
zhengmin发布了新的文献求助10
2秒前
爆米花应助11采纳,获得10
2秒前
鹊起惊梦完成签到,获得积分10
2秒前
龙兰应助英吉利25采纳,获得20
3秒前
Xxiao完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI2S应助没有答案采纳,获得10
5秒前
luchen完成签到,获得积分10
6秒前
TXG完成签到 ,获得积分10
6秒前
6秒前
迪克牛仔完成签到 ,获得积分20
6秒前
梁某发布了新的文献求助10
8秒前
烟花应助无极采纳,获得10
8秒前
诚心的小土豆应助呜呜采纳,获得20
8秒前
8秒前
豆子完成签到,获得积分10
8秒前
无事小神仙完成签到,获得积分10
9秒前
柠七完成签到,获得积分10
10秒前
黑钻发布了新的文献求助10
10秒前
10秒前
10秒前
最後まで发布了新的文献求助10
11秒前
12秒前
MrX发布了新的文献求助10
12秒前
13秒前
陶醉的翅膀完成签到,获得积分10
13秒前
lovehao发布了新的文献求助10
13秒前
陈cc发布了新的文献求助10
13秒前
14秒前
CooperLI发布了新的文献求助10
14秒前
包容代芹发布了新的文献求助20
14秒前
15秒前
风趣采白发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969222
求助须知:如何正确求助?哪些是违规求助? 3514124
关于积分的说明 11171948
捐赠科研通 3249361
什么是DOI,文献DOI怎么找? 1794799
邀请新用户注册赠送积分活动 875431
科研通“疑难数据库(出版商)”最低求助积分说明 804779