A genetic algorithm with critical path-based variable neighborhood search for distributed assembly job shop scheduling problem

计算机科学 可变邻域搜索 调度(生产过程) 关键路径法 数学优化 作业车间调度 整数规划 遗传算法 线性规划 算法 元启发式 地铁列车时刻表 机器学习 数学 系统工程 工程类 操作系统
作者
Shan Tian,Chunjiang Zhang,Jiaxin Fan,Xinyu Li,Liang Gao
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:85: 101485-101485 被引量:2
标识
DOI:10.1016/j.swevo.2024.101485
摘要

Production scheduling in distributed manufacturing systems has become an active research field, where large-sized complicated products, such as airplanes and ships, are taken as the primary focus. This paper investigates a distributed assembly job shop scheduling problem (DAJSP) which consists of two production phases. The first stage processes components in several job shops, and the second stage assembles the processed parts into final products. First, a mixed integer linear programming (MILP) model is established to describe the problem with minimizing maximum completion time and find optimal schedules for small-scale scenarios. Afterwards, a genetic algorithm with variable neighborhood search (GA-VNS) is proposed to address more complex instances, which adopts the genetic algorithm as the main framework and employs the variable neighborhood search for exploration. A problem-specific three-vector encoding scheme is designed to represent three decision-making processes of the DAJSP accordingly. To improve candidate solutions, a disjunctive graph model for DAJSP is formulated and three critical path-based neighborhood structures which directly perform on encoding vectors are designed. Numerical experiments are conducted on four groups of instances with different scales and the experimental results demonstrate the effectiveness of the proposed MILP model and GA-VNS. To sum up, the proposed GA-VNS shows the best performance on 30 instances out of 40 instances, while the superior stability has also been proved by statistical tests. In addition, two complicated DAJSP cases are abstracted from an enterprise for fabricating large complex components to further validate the GA-VNS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助George Will采纳,获得10
刚刚
2秒前
斯文觅珍完成签到,获得积分20
5秒前
务实涔雨发布了新的文献求助10
5秒前
6秒前
7秒前
Orange应助lh采纳,获得10
8秒前
夏日天空发布了新的文献求助10
9秒前
wangxu完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
无情的麦片完成签到 ,获得积分10
10秒前
今后应助阵风_采纳,获得10
10秒前
12秒前
16秒前
无花果应助lxl采纳,获得10
16秒前
杳鸢应助wrk采纳,获得30
17秒前
CodeCraft应助xinjiasuki采纳,获得10
17秒前
18秒前
18秒前
Angelie发布了新的文献求助50
19秒前
19秒前
20秒前
20秒前
大胆机器猫完成签到,获得积分20
21秒前
嗯嗯完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856751
关于积分的说明 8106993
捐赠科研通 2522025
什么是DOI,文献DOI怎么找? 1355312
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478