Stokes shift prediction of fluorescent organic dyes using machine learning based hybrid cascade models

均方误差 梯度升压 Boosting(机器学习) 计算机科学 人工智能 级联 斯托克斯位移 荧光 回归 生物系统 决策树 线性回归 随机森林 机器学习 材料科学 数学 化学 统计 物理 光学 色谱法 生物
作者
Kapil Dev Mahato,Shraban Das,Chandrashekhar Azad,Uday Kumar
出处
期刊:Dyes and Pigments [Elsevier BV]
卷期号:222: 111918-111918 被引量:10
标识
DOI:10.1016/j.dyepig.2023.111918
摘要

Fluorescent organic dyes are widely used in various fields, including science and technology, research and development, medicine, and drug delivery. Multitudinous attempts have been made by experimentalists to develop such fluorescent organic dyes with the desired Stokes shift property at negligible cost and time. For quickly and accurately predicting the Stokes shift property of fluorescent organic dye, we proposed eight hybrid models based on the combination of nine single machine-learning models. To fulfill the objective, we considered a dataset of 3066 fluorescent organic materials and evaluated the performance of each model using three evaluation parameters: mean absolute error (MAE), root mean squared error (RMSE), and the coefficient of determination (R2). The hybrid cascade model of Extreme Gradient Boosting Regression and Light Gradient Boosting Machine Regression (XGBR + LGBMR) performed best for Stokes shift prediction, with MAE of 13.83 nm, RMSE of 19.95 nm, and R2 of 86.18 %. The prediction performance of all the undertaken models was validated by the experimental data of four xanthene dyes (Rh-19, Rh–B, Rh-6G, and Rh-110). In this regard, the XGBR + DTR (Extreme Gradient Boosting Regression + Decision Tree Regression) model was the best performer, with errors ranging from 5 to 13 nm for four dyes. The resultant errors are much smaller than the recently reported synthesized material with an error of 30 nm. The proposed models allow for rapid and cost-effective screening of a wide range of fluorescent organic dyes, which assists the researchers in gaining prior knowledge of materials and accelerates the discovery of new materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苦雨完成签到,获得积分10
1秒前
mmol发布了新的文献求助10
1秒前
3秒前
HONGZHOU发布了新的文献求助10
3秒前
空白完成签到,获得积分10
3秒前
4秒前
4秒前
脑洞疼应助sober采纳,获得20
4秒前
任性的不愁应助刘老师采纳,获得10
6秒前
甜蜜的振家完成签到,获得积分10
6秒前
顾矜应助晨许沫光采纳,获得10
6秒前
起床了吗发布了新的文献求助30
7秒前
会科研的胡萝卜完成签到,获得积分10
7秒前
7秒前
罗杰发布了新的文献求助10
8秒前
6666666666完成签到 ,获得积分10
8秒前
9秒前
科研副本完成签到,获得积分10
9秒前
鲤鱼一一完成签到,获得积分10
11秒前
12秒前
丘比特应助早日毕业采纳,获得10
13秒前
hubo发布了新的文献求助10
14秒前
15秒前
17秒前
凤梨配汉堡完成签到,获得积分10
17秒前
Emily完成签到,获得积分10
17秒前
可爱的函函应助起床了吗采纳,获得10
18秒前
金阿垚在科研完成签到,获得积分10
18秒前
aa完成签到,获得积分10
20秒前
21秒前
orixero应助顺利的耶采纳,获得10
22秒前
22秒前
22秒前
抑郁小鼠解剖家完成签到,获得积分10
22秒前
嘟嘟完成签到,获得积分10
23秒前
alan完成签到 ,获得积分10
24秒前
25秒前
DDJoy完成签到,获得积分10
26秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774624
求助须知:如何正确求助?哪些是违规求助? 3320436
关于积分的说明 10200257
捐赠科研通 3035039
什么是DOI,文献DOI怎么找? 1665336
邀请新用户注册赠送积分活动 796860
科研通“疑难数据库(出版商)”最低求助积分说明 757618