Stokes shift prediction of fluorescent organic dyes using machine learning based hybrid cascade models

均方误差 梯度升压 Boosting(机器学习) 计算机科学 人工智能 级联 斯托克斯位移 荧光 回归 生物系统 决策树 线性回归 随机森林 机器学习 材料科学 数学 化学 统计 物理 光学 色谱法 生物
作者
Kapil Dev Mahato,Shraban Das,Chandrashekhar Azad,Uday Kumar
出处
期刊:Dyes and Pigments [Elsevier BV]
卷期号:222: 111918-111918 被引量:15
标识
DOI:10.1016/j.dyepig.2023.111918
摘要

Fluorescent organic dyes are widely used in various fields, including science and technology, research and development, medicine, and drug delivery. Multitudinous attempts have been made by experimentalists to develop such fluorescent organic dyes with the desired Stokes shift property at negligible cost and time. For quickly and accurately predicting the Stokes shift property of fluorescent organic dye, we proposed eight hybrid models based on the combination of nine single machine-learning models. To fulfill the objective, we considered a dataset of 3066 fluorescent organic materials and evaluated the performance of each model using three evaluation parameters: mean absolute error (MAE), root mean squared error (RMSE), and the coefficient of determination (R2). The hybrid cascade model of Extreme Gradient Boosting Regression and Light Gradient Boosting Machine Regression (XGBR + LGBMR) performed best for Stokes shift prediction, with MAE of 13.83 nm, RMSE of 19.95 nm, and R2 of 86.18 %. The prediction performance of all the undertaken models was validated by the experimental data of four xanthene dyes (Rh-19, Rh–B, Rh-6G, and Rh-110). In this regard, the XGBR + DTR (Extreme Gradient Boosting Regression + Decision Tree Regression) model was the best performer, with errors ranging from 5 to 13 nm for four dyes. The resultant errors are much smaller than the recently reported synthesized material with an error of 30 nm. The proposed models allow for rapid and cost-effective screening of a wide range of fluorescent organic dyes, which assists the researchers in gaining prior knowledge of materials and accelerates the discovery of new materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niki完成签到,获得积分10
刚刚
闵问柳发布了新的文献求助10
刚刚
luiii发布了新的文献求助10
1秒前
听话的巧荷完成签到,获得积分20
1秒前
1秒前
彭于晏应助姚姚姚采纳,获得10
1秒前
斗罗大陆发布了新的文献求助10
1秒前
王讯发布了新的文献求助10
2秒前
某某发布了新的文献求助10
2秒前
无花果应助M张采纳,获得10
2秒前
小蘑菇应助M张采纳,获得10
2秒前
烟花应助M张采纳,获得10
3秒前
李健的小迷弟应助M张采纳,获得10
3秒前
ding应助M张采纳,获得10
3秒前
上官若男应助M张采纳,获得10
3秒前
小蘑菇应助M张采纳,获得30
3秒前
清爽老九发布了新的文献求助10
3秒前
4秒前
隐形曼青应助哦吼采纳,获得10
4秒前
4秒前
5秒前
科研门外汉完成签到,获得积分20
5秒前
马小强发布了新的文献求助10
6秒前
搜集达人应助闵问柳采纳,获得10
6秒前
luiii完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
亭亭玉立发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
子南完成签到,获得积分10
9秒前
zzzzz发布了新的文献求助10
9秒前
跳跃猫咪完成签到,获得积分10
10秒前
10秒前
10秒前
莫挨老子发布了新的文献求助10
11秒前
多情怡发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764