Knee landmarks detection via deep learning for automatic imaging evaluation of trochlear dysplasia and patellar height

神经组阅片室 医学 介入放射学 发育不良 放射科 髌骨 超声波 口腔正畸科 人工智能 解剖 神经学 计算机科学 病理 精神科
作者
Roberto M. Barbosa,Luís Serrador,Manuel Vieira da Silva,Carlos Sampaio Macedo,Cristina P. Santos
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:34 (9): 5736-5747
标识
DOI:10.1007/s00330-024-10596-9
摘要

Abstract Objectives To develop and validate a deep learning–based approach to automatically measure the patellofemoral instability (PFI) indices related to patellar height and trochlear dysplasia in knee magnetic resonance imaging (MRI) scans. Methods A total of 763 knee MRI slices from 95 patients were included in the study, and 3393 anatomical landmarks were annotated for measuring sulcus angle (SA), trochlear facet asymmetry (TFA), trochlear groove depth (TGD) and lateral trochlear inclination (LTI) to assess trochlear dysplasia, and Insall-Salvati index (ISI), modified Insall-Salvati index (MISI), Caton Deschamps index (CDI) and patellotrochlear index (PTI) to assess patellar height. A U-Net based network was implemented to predict the landmarks’ locations. The successful detection rate (SDR) and the mean absolute error (MAE) evaluation metrics were used to evaluate the performance of the network. The intraclass correlation coefficient (ICC) was also used to evaluate the reliability of the proposed framework to measure the mentioned PFI indices. Results The developed models achieved good accuracy in predicting the landmarks’ locations, with a maximum value for the MAE of 1.38 ± 0.76 mm. The results show that LTI, TGD, ISI, CDI and PTI can be measured with excellent reliability (ICC > 0.9), and SA, TFA and MISI can be measured with good reliability (ICC > 0.75), with the proposed framework. Conclusions This study proposes a reliable approach with promising applicability for automatic patellar height and trochlear dysplasia assessment, assisting the radiologists in their clinical practice. Clinical relevance statement The objective knee landmarks detection on MRI images provided by artificial intelligence may improve the reproducibility and reliability of the imaging evaluation of trochlear anatomy and patellar height, assisting radiologists in their clinical practice in the patellofemoral instability assessment. Key Points • Imaging evaluation of patellofemoral instability is subjective and vulnerable to substantial intra and interobserver variability. • Patellar height and trochlear dysplasia are reliably assessed in MRI by means of artificial intelligence (AI). • The developed AI framework provides an objective evaluation of patellar height and trochlear dysplasia enhancing the clinical practice of the radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
novose完成签到,获得积分10
1秒前
努力奔跑发布了新的文献求助10
2秒前
Oracle应助谷粱紫槐采纳,获得30
2秒前
2秒前
Oreki发布了新的文献求助10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
情怀应助科研通管家采纳,获得50
3秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
半柚应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI5应助Duang采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得30
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
aaqqz完成签到 ,获得积分20
4秒前
zhenglamei发布了新的文献求助10
6秒前
6秒前
7秒前
yy发布了新的文献求助10
8秒前
8秒前
10秒前
多肽专家完成签到,获得积分10
11秒前
12秒前
12秒前
zz发布了新的文献求助10
12秒前
happy发布了新的文献求助10
12秒前
13秒前
Yippee发布了新的文献求助10
14秒前
赘婿应助kyt采纳,获得10
14秒前
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732526
求助须知:如何正确求助?哪些是违规求助? 3276777
关于积分的说明 9998504
捐赠科研通 2992330
什么是DOI,文献DOI怎么找? 1642177
邀请新用户注册赠送积分活动 780239
科研通“疑难数据库(出版商)”最低求助积分说明 748713