Experimental study on tensile behaviors of cracked ultra-high performance concrete under freezing and thawing

开裂 极限抗拉强度 材料科学 复合材料 收缩率 耐久性 拉伸应变 使用寿命 拉伸试验
作者
Lili Kan,Lan-qing Dai,Ning Kong,Bin Peng,Fei Wang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:411: 134187-134187 被引量:5
标识
DOI:10.1016/j.conbuildmat.2023.134187
摘要

A combination of external actions and autogenous shrinkage makes ultra-high performance concrete (UHPC) prone to cracking in service, which inevitably harms the durability and working life. This paper focuses on studying the effects of freezing and thawing (FT) cycles on the tensile behavior of cracked UHPC. Three sets of dog-bone shaped specimens with pre-tensile strain levels of 0%, 0.05%, and 0.1% were prepared. Two kinds of experimental environments including FT cycles and soaking in water were adopted for comparison. Uniaxial tensile test, non-destructive measurements, and loss-on-ignition were performed to characterize the performances, along with ImageJ technology to identify the sectional pore structures. The results indicated that, compared with non-cracked UHPC, long-term FT action caused more deterioration in the initial cracking strength, tensile strength, tensile strain, and especially strain energy of cracked UHPC. In comparison, the water action generally favored the development of tensile properties of UHPC independent of the cracking state. The crack distribution tended to be unsaturated under the FT environment, showing a larger cracking spacing. The FT action hampered the re-hydration reaction, leading to a slower improvement of mass and resonance frequency at the early stage, and the values were always lower than those of the non-cracked UHPC. In addition, the section near to pre-tensile crack showed more large pores under the FT environment, and a reverse trend occurred under the water environment. Thus, it could be concluded that the cracked UHPC was more sensitive to FT action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiejie59867发布了新的文献求助10
1秒前
科研通AI2S应助dd采纳,获得10
1秒前
黄黄完成签到,获得积分0
1秒前
从容水蓝发布了新的文献求助10
2秒前
西粤学完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
4秒前
5秒前
munawar完成签到 ,获得积分10
5秒前
smottom应助sresr采纳,获得10
5秒前
小马甲应助xu采纳,获得10
5秒前
6秒前
myg123完成签到 ,获得积分10
7秒前
7秒前
zppp发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
我是老大应助仪式感采纳,获得10
10秒前
学术搭子完成签到,获得积分10
11秒前
随风走完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
致语完成签到 ,获得积分20
13秒前
13秒前
科研通AI6应助娇气的友易采纳,获得10
17秒前
ZX801发布了新的文献求助10
17秒前
17秒前
lyt发布了新的文献求助10
18秒前
18秒前
安可完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
可爱的函函应助bochen采纳,获得10
19秒前
Chandler完成签到,获得积分10
20秒前
万能图书馆应助莫莫采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666162
求助须知:如何正确求助?哪些是违规求助? 4879499
关于积分的说明 15116271
捐赠科研通 4825301
什么是DOI,文献DOI怎么找? 2583190
邀请新用户注册赠送积分活动 1537255
关于科研通互助平台的介绍 1495523