Multi-Instance Multi-Task Learning for Joint Clinical Outcome and Genomic Profile Predictions From the Histopathological Images

人工智能 计算机科学 任务(项目管理) 接头(建筑物) 结果(博弈论) 模式识别(心理学) 数学 工程类 数理经济学 建筑工程 系统工程
作者
Wei Shao,Hang Shi,Jianxin Liu,Yingli Zuo,Liang Sun,Tiansong Xia,Wanyuan Chen,Peng Wan,Jianpeng Sheng,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 2266-2278 被引量:1
标识
DOI:10.1109/tmi.2024.3362852
摘要

With the remarkable success of digital histopathology and the deep learning technology, many whole-slide pathological images (WSIs) based deep learning models are designed to help pathologists diagnose human cancers. Recently, rather than predicting categorical variables as in cancer diagnosis, several deep learning studies are also proposed to estimate the continuous variables such as the patients' survival or their transcriptional profile. However, most of the existing studies focus on conducting these predicting tasks separately, which overlooks the useful intrinsic correlation among them that can boost the prediction performance of each individual task. In addition, it is sill challenge to design the WSI-based deep learning models, since a WSI is with huge size but annotated with coarse label. In this study, we propose a general multi-instance multi-task learning framework (HistMIMT) for multi-purpose prediction from WSIs. Specifically, we firstly propose a novel multi-instance learning module (TMICS) considering both common and specific task information across different tasks to generate bag representation for each individual task. Then, a soft-mask based fusion module with channel attention (SFCA) is developed to leverage useful information from the related tasks to help improve the prediction performance on target task. We evaluate our method on three cancer cohorts derived from the Cancer Genome Atlas (TCGA). For each cohort, our multi-purpose prediction tasks range from cancer diagnosis, survival prediction and estimating the transcriptional profile of gene TP53. The experimental results demonstrated that HistMIMT can yield better outcome on all clinical prediction tasks than its competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助失眠的晓露采纳,获得10
1秒前
1秒前
jjj完成签到 ,获得积分10
1秒前
BettyNie完成签到 ,获得积分10
1秒前
汶溢完成签到,获得积分10
2秒前
topsun完成签到,获得积分10
3秒前
ming完成签到 ,获得积分10
4秒前
5秒前
平淡的寄风完成签到,获得积分10
6秒前
yzxzdm完成签到 ,获得积分10
7秒前
Zfx完成签到,获得积分10
8秒前
destiny完成签到 ,获得积分10
8秒前
9秒前
huichuanyin完成签到 ,获得积分10
9秒前
圈圈黄完成签到,获得积分10
9秒前
10秒前
King完成签到,获得积分10
10秒前
涂涂完成签到 ,获得积分10
12秒前
Allen完成签到,获得积分10
13秒前
Curry完成签到 ,获得积分10
14秒前
yamoon完成签到,获得积分10
15秒前
瑶瑶公主会刷盾完成签到 ,获得积分10
15秒前
15秒前
小巧的怜晴完成签到,获得积分10
16秒前
佟碧玉完成签到,获得积分10
17秒前
欣喜的缘分完成签到 ,获得积分10
18秒前
dunhuang完成签到,获得积分10
18秒前
19秒前
一一完成签到,获得积分10
20秒前
张爱学发布了新的文献求助10
20秒前
天明完成签到,获得积分10
20秒前
看文献完成签到,获得积分10
21秒前
dlut0407完成签到,获得积分10
21秒前
22秒前
河堤完成签到 ,获得积分10
23秒前
彩色完成签到,获得积分10
30秒前
雨醉东风完成签到,获得积分10
30秒前
海林涵完成签到 ,获得积分10
31秒前
luyuhao3完成签到,获得积分10
31秒前
木雨亦潇潇完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733511
求助须知:如何正确求助?哪些是违规求助? 3277654
关于积分的说明 10003735
捐赠科研通 2993737
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944