Multi-instance Multi-task Learning for Joint Clinical Outcome and Genomic Profile Predictions from the Histopathological Images

人工智能 计算机科学 任务(项目管理) 接头(建筑物) 结果(博弈论) 模式识别(心理学) 数学 工程类 数理经济学 建筑工程 系统工程
作者
Wei Shao,Hang Shi,Jianxin Liu,Yingli Zuo,Liang Sun,Tiansong Xia,Wanyuan Chen,Peng Wan,Jianpeng Sheng,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 2266-2278 被引量:1
标识
DOI:10.1109/tmi.2024.3362852
摘要

With the remarkable success of digital histopathology and the deep learning technology, many whole-slide pathological images (WSIs) based deep learning models are designed to help pathologists diagnose human cancers. Recently, rather than predicting categorical variables as in cancer diagnosis, several deep learning studies are also proposed to estimate the continuous variables such as the patients' survival or their transcriptional profile. However, most of the existing studies focus on conducting these predicting tasks separately, which overlooks the useful intrinsic correlation among them that can boost the prediction performance of each individual task. In addition, it is sill challenge to design the WSI-based deep learning models, since a WSI is with huge size but annotated with coarse label. In this study, we propose a general multi-instance multi-task learning framework (HistMIMT) for multi-purpose prediction from WSIs. Specifically, we firstly propose a novel multi-instance learning module (TMICS) considering both common and specific task information across different tasks to generate bag representation for each individual task. Then, a soft-mask based fusion module with channel attention (SFCA) is developed to leverage useful information from the related tasks to help improve the prediction performance on target task. We evaluate our method on three cancer cohorts derived from the Cancer Genome Atlas (TCGA). For each cohort, our multi-purpose prediction tasks range from cancer diagnosis, survival prediction and estimating the transcriptional profile of gene TP53. The experimental results demonstrated that HistMIMT can yield better outcome on all clinical prediction tasks than its competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Tracy麦子采纳,获得10
刚刚
刚刚
huhuhu发布了新的文献求助10
刚刚
doxiao发布了新的文献求助10
2秒前
ixueyi发布了新的文献求助10
3秒前
水1111发布了新的文献求助10
4秒前
小丽酱发布了新的文献求助10
4秒前
Hty1764完成签到,获得积分10
4秒前
能干的棉花糖完成签到,获得积分10
5秒前
6秒前
6秒前
Evan应助费费Queen采纳,获得10
11秒前
任梓宁发布了新的文献求助10
11秒前
Gan完成签到,获得积分10
11秒前
研友_VZG7GZ应助yrt采纳,获得10
11秒前
11秒前
十月发布了新的文献求助10
12秒前
华仔应助旋转木马9个采纳,获得10
13秒前
浔城游侠完成签到,获得积分10
13秒前
Az完成签到,获得积分10
14秒前
15秒前
15秒前
xiaopingbing完成签到 ,获得积分10
15秒前
SciGPT应助Aventen采纳,获得10
15秒前
Aurora完成签到,获得积分10
17秒前
19秒前
jzyy发布了新的文献求助10
20秒前
103921wjk完成签到,获得积分10
20秒前
Ergou完成签到 ,获得积分20
20秒前
史道夫发布了新的文献求助10
22秒前
dizi_88应助zhaozhao采纳,获得10
24秒前
znlion完成签到,获得积分10
24秒前
ILUIGANG发布了新的文献求助30
24秒前
24秒前
努力上进的小张完成签到,获得积分10
25秒前
书霂完成签到,获得积分10
26秒前
fuje完成签到,获得积分10
27秒前
28秒前
31秒前
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153568
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861428
捐赠科研通 2462728
什么是DOI,文献DOI怎么找? 1310940
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809