Early energy performance analysis of smart buildings by consolidated artificial neural network paradigms

均方误差 平均绝对百分比误差 人工神经网络 冷负荷 计算机科学 平均绝对误差 算法 相关系数 决定系数 人工智能 机器学习 元启发式 数据挖掘 统计 数学 工程类 机械工程 空调
作者
Guoqing Guo,Peng Liu,Yuchen Zheng
出处
期刊:Heliyon [Elsevier]
卷期号:10 (4): e25848-e25848 被引量:3
标识
DOI:10.1016/j.heliyon.2024.e25848
摘要

The assessment of energy performance in smart buildings has emerged as a prominent area of research driven by the increasing energy consumption trends worldwide. Analyzing the attributes of buildings using optimized machine learning models has been a highly effective approach for estimating the cooling load (CL) and heating load (HL) of the buildings. In this study, an artificial neural network (ANN) is used as the basic predictor that undergoes optimization using five metaheuristic algorithms, namely coati optimization algorithm (COA), gazelle optimization algorithm (GOA), incomprehensible but intelligible-in-time logics (IbIL), osprey optimization algorithm (OOA), and sooty tern optimization algorithm (STOA) to predict the CL and HL of a residential building. The models are trained and tested via an Energy Efficiency dataset (downloaded from UCI Repository). A score-based ranking system is built upon three accuracy evaluators including mean absolute percentage error (MAPE), root mean square error (RMSE), and percentage-Pearson correlation coefficient (PPCC) to compare the prediction accuracy of the models. Referring to the results, all models demonstrated high accuracy (e.g., PPCCs >89%) for predicting both CL and HL. However, the calculated final scores of the models (43, 20, 39, 38, and 10 in HL prediction and 36, 20, 42, 42, and 10 in CL prediction for the STOA, OOA, IbIL, GOA, and COA, respectively) indicated that the GOA, IbIL, and STOA perform better than COA and OOA. Moreover, a comparison with various algorithms used in earlier literature showed that the GOA, IbIL, and STOA provide a more accurate solution. Therefore, the use of ANN optimized by these three algorithms is recommended for practical early forecast of energy performance in buildings and optimizing the design of energy systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHH完成签到,获得积分10
刚刚
wanci应助风再起时采纳,获得10
1秒前
Jasper应助谦让成协采纳,获得10
1秒前
2秒前
司南应助xinanan采纳,获得10
2秒前
syhjxk发布了新的文献求助10
2秒前
2秒前
跑快点发布了新的文献求助10
3秒前
雾岛发布了新的文献求助30
4秒前
5秒前
111发布了新的文献求助10
5秒前
王企鹅完成签到,获得积分10
5秒前
大模型应助小王采纳,获得10
7秒前
快乐熊猫完成签到,获得积分10
7秒前
faded发布了新的文献求助10
7秒前
简单的八宝粥完成签到,获得积分10
8秒前
北风完成签到,获得积分10
8秒前
不挑食的Marcophages完成签到,获得积分10
8秒前
Lucas应助fxsg采纳,获得10
8秒前
pluto应助fxsg采纳,获得10
9秒前
希望天下0贩的0应助fxsg采纳,获得10
9秒前
9秒前
10秒前
AKLIZE完成签到,获得积分10
11秒前
xj_yjl完成签到,获得积分10
11秒前
兔兔鑫完成签到,获得积分10
12秒前
游侠客完成签到,获得积分10
12秒前
田様应助pzy采纳,获得10
13秒前
13秒前
pidan完成签到,获得积分10
14秒前
15秒前
爱科研的小潘完成签到,获得积分10
16秒前
曹操完成签到,获得积分10
16秒前
tzk发布了新的文献求助10
17秒前
杪春完成签到 ,获得积分10
17秒前
精明乐发布了新的文献求助10
18秒前
谦让成协发布了新的文献求助10
19秒前
三月聚粮应助111采纳,获得10
19秒前
安详的语蕊完成签到,获得积分10
20秒前
qifeng完成签到,获得积分10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262947
求助须知:如何正确求助?哪些是违规求助? 2903625
关于积分的说明 8325918
捐赠科研通 2573523
什么是DOI,文献DOI怎么找? 1398379
科研通“疑难数据库(出版商)”最低求助积分说明 654153
邀请新用户注册赠送积分活动 632707