已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

医学 无线电技术 恶性肿瘤 超声波 放射科 逻辑回归 队列 接收机工作特性 人工智能 病理 内科学 计算机科学
作者
Ao Li,Yu Hu,Xin‐Wu Cui,Xinhua Ye,Xiaojing Peng,Wenzhi Lv,C. Zhao
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851231217227
摘要

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助辛勤的志泽采纳,获得10
1秒前
2秒前
Aha完成签到 ,获得积分10
3秒前
6秒前
6秒前
6秒前
许晴完成签到 ,获得积分10
7秒前
Fjj完成签到,获得积分10
9秒前
啾啾发布了新的文献求助100
9秒前
moiaoh完成签到,获得积分10
11秒前
11秒前
13秒前
17秒前
科研通AI5应助啾啾采纳,获得10
19秒前
胡一刀完成签到,获得积分10
20秒前
dreamboat完成签到,获得积分10
21秒前
21秒前
梁梁完成签到 ,获得积分10
23秒前
23秒前
沉静乾发布了新的文献求助10
23秒前
24秒前
26秒前
梁海萍发布了新的文献求助10
26秒前
EKo完成签到,获得积分10
27秒前
情怀应助zjx采纳,获得10
27秒前
畅快枕头完成签到 ,获得积分0
28秒前
SciHub完成签到 ,获得积分10
28秒前
草莓熊1215完成签到 ,获得积分10
29秒前
彭于晏应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
30秒前
爆米花应助科研通管家采纳,获得30
30秒前
李文豪发布了新的文献求助10
30秒前
唐泽雪穗发布了新的文献求助100
32秒前
33秒前
山山完成签到 ,获得积分10
36秒前
36秒前
哲000完成签到 ,获得积分10
37秒前
土豆小胖子完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628