Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

医学 无线电技术 恶性肿瘤 超声波 放射科 逻辑回归 队列 接收机工作特性 人工智能 病理 内科学 计算机科学
作者
Ao Li,Yu Hu,Xin‐Wu Cui,Xinhua Ye,Xiaojing Peng,Wenzhi Lv,C. Zhao
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851231217227
摘要

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小旋风应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
敬老院N号应助科研通管家采纳,获得30
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研小白应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
文献缺缺应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
调研昵称发布了新的文献求助10
1秒前
1秒前
HUYUE完成签到 ,获得积分10
2秒前
云锋完成签到,获得积分10
2秒前
奋斗战斗机完成签到,获得积分10
3秒前
SYLH应助干秋白采纳,获得10
3秒前
极意完成签到 ,获得积分10
4秒前
左友铭发布了新的文献求助10
4秒前
4秒前
4秒前
爱听歌雨真完成签到,获得积分10
5秒前
5秒前
Amai发布了新的文献求助20
6秒前
酷酷凤灵发布了新的文献求助10
6秒前
7秒前
风雨1210完成签到,获得积分10
7秒前
抗压兔完成签到 ,获得积分10
7秒前
chillin发布了新的文献求助10
7秒前
阳尧发布了新的文献求助10
8秒前
天天快乐应助troubadourelf采纳,获得10
8秒前
勤恳慕蕊发布了新的文献求助10
9秒前
9秒前
kxy完成签到,获得积分10
12秒前
12秒前
婧婧完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794