Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

医学 无线电技术 恶性肿瘤 超声波 放射科 逻辑回归 队列 接收机工作特性 人工智能 病理 内科学 计算机科学
作者
Ao Li,Yu Hu,Xin‐Wu Cui,Xinhua Ye,Xiaojing Peng,Wenzhi Lv,C. Zhao
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851231217227
摘要

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪莫茗应助专业中药人采纳,获得10
刚刚
DreamLover完成签到,获得积分10
刚刚
rksm完成签到 ,获得积分10
1秒前
1秒前
阳光的道消完成签到,获得积分10
2秒前
冒号完成签到,获得积分10
2秒前
子虚一尘完成签到,获得积分10
2秒前
3秒前
欧阳小枫完成签到 ,获得积分10
3秒前
冷酷丹翠发布了新的文献求助10
3秒前
YL完成签到 ,获得积分10
3秒前
长孙归尘完成签到 ,获得积分10
3秒前
沙克几十块完成签到,获得积分10
3秒前
酷波er应助ZZzz采纳,获得10
3秒前
3秒前
欧阳铭完成签到,获得积分10
4秒前
4秒前
BetterH完成签到 ,获得积分10
4秒前
崔悦欣完成签到,获得积分10
4秒前
zhuzhu完成签到,获得积分10
5秒前
蒋若风完成签到,获得积分10
5秒前
6秒前
ccc完成签到,获得积分20
6秒前
慧喆完成签到 ,获得积分10
7秒前
熠熠完成签到,获得积分10
7秒前
123by完成签到,获得积分10
7秒前
ccc完成签到,获得积分10
7秒前
左彦完成签到,获得积分10
8秒前
莴苣完成签到,获得积分10
8秒前
小白完成签到,获得积分10
8秒前
古炮发布了新的文献求助10
8秒前
小麦完成签到,获得积分10
9秒前
9秒前
jupiter发布了新的文献求助10
9秒前
神内小天使完成签到,获得积分10
9秒前
Planta完成签到,获得积分10
10秒前
隐形曼青应助崔悦欣采纳,获得10
10秒前
英姑应助谷粱诗云采纳,获得10
11秒前
Cherish完成签到,获得积分10
12秒前
bkagyin应助邢凡柔采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957243
求助须知:如何正确求助?哪些是违规求助? 3503275
关于积分的说明 11112387
捐赠科研通 3234383
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330