亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

医学 无线电技术 恶性肿瘤 超声波 放射科 逻辑回归 队列 接收机工作特性 人工智能 病理 内科学 计算机科学
作者
Ao Li,Yu Hu,Xin‐Wu Cui,Xinhua Ye,Xiaojing Peng,Wenzhi Lv,C. Zhao
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851231217227
摘要

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Fletcherschwann完成签到,获得积分10
10秒前
10秒前
15秒前
Lucas应助酷酷的冬灵采纳,获得10
16秒前
16秒前
Lewis发布了新的文献求助10
21秒前
斯文败类应助鲜艳的手链采纳,获得10
22秒前
24秒前
28秒前
华仔应助kkkkk采纳,获得10
38秒前
47秒前
51秒前
lingyun4592发布了新的文献求助10
53秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
浮游应助科研通管家采纳,获得10
54秒前
mmyhn应助科研通管家采纳,获得10
54秒前
mmyhn应助科研通管家采纳,获得20
54秒前
天天快乐应助哈皮波采纳,获得10
55秒前
1分钟前
酷波er应助lingyun4592采纳,获得10
1分钟前
哈皮波发布了新的文献求助10
1分钟前
SciGPT应助哈皮波采纳,获得10
1分钟前
lingyun4592完成签到,获得积分10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
小二郎应助elliotzzz采纳,获得10
1分钟前
科研启动完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Xiaque发布了新的文献求助10
1分钟前
2分钟前
kkkkk发布了新的文献求助10
2分钟前
2分钟前
2分钟前
ranan发布了新的文献求助10
2分钟前
2分钟前
Huuuuu完成签到,获得积分10
2分钟前
CHINA_C13发布了新的文献求助10
2分钟前
一只大嵩鼠完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426408
求助须知:如何正确求助?哪些是违规求助? 4540188
关于积分的说明 14171785
捐赠科研通 4457921
什么是DOI,文献DOI怎么找? 2444736
邀请新用户注册赠送积分活动 1435738
关于科研通互助平台的介绍 1413211