Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

医学 无线电技术 恶性肿瘤 超声波 放射科 逻辑回归 队列 接收机工作特性 人工智能 病理 内科学 计算机科学
作者
Ao Li,Yu Hu,Xin‐Wu Cui,Xinhua Ye,Xiaojing Peng,Wenzhi Lv,C. Zhao
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851231217227
摘要

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Leon完成签到,获得积分10
刚刚
221完成签到,获得积分10
刚刚
华仔完成签到,获得积分10
刚刚
iNk应助酷酷的山雁采纳,获得10
3秒前
陈慧钦发布了新的文献求助10
3秒前
3秒前
tiatia应助5999采纳,获得10
3秒前
5秒前
香蕉觅云应助Lee采纳,获得10
6秒前
充电宝应助研友_8Kedgn采纳,获得10
7秒前
研研发布了新的文献求助10
7秒前
汉堡包应助blueskyzhi采纳,获得10
7秒前
皮蛋完成签到,获得积分10
9秒前
9秒前
鱼贝贝完成签到 ,获得积分10
11秒前
懒洋洋完成签到 ,获得积分10
13秒前
yaxuandeng完成签到,获得积分10
14秒前
14秒前
浮游应助wocao采纳,获得10
15秒前
Lee发布了新的文献求助10
17秒前
18秒前
deeperection发布了新的文献求助10
20秒前
22秒前
丘比特应助ahfjk采纳,获得10
23秒前
youxiu完成签到 ,获得积分10
23秒前
24秒前
dolabmu完成签到 ,获得积分10
25秒前
25秒前
26秒前
jiaxiangxia完成签到 ,获得积分10
27秒前
wang发布了新的文献求助10
27秒前
28秒前
HuSP完成签到,获得积分10
30秒前
菜菜博士发布了新的文献求助10
31秒前
xiaoqi完成签到,获得积分10
31秒前
一包辣条完成签到,获得积分10
31秒前
Rong完成签到 ,获得积分10
31秒前
研友_8Kedgn发布了新的文献求助10
33秒前
应飞飞完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429