Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

医学 无线电技术 恶性肿瘤 超声波 放射科 逻辑回归 队列 接收机工作特性 人工智能 病理 内科学 计算机科学
作者
Ao Li,Yu Hu,Xin‐Wu Cui,Xinhua Ye,Xiaojing Peng,Wenzhi Lv,C. Zhao
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851231217227
摘要

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI6应助djbj2022采纳,获得10
2秒前
xiaohuang发布了新的文献求助10
2秒前
vividkingking发布了新的文献求助10
2秒前
NexusExplorer应助吴念采纳,获得10
4秒前
4秒前
KKKZ完成签到,获得积分10
5秒前
大胆傲芙完成签到,获得积分10
6秒前
今后应助高宇晖采纳,获得10
6秒前
凉秋气爽完成签到,获得积分10
7秒前
7秒前
盖亚奇应助ocean采纳,获得20
8秒前
浮游应助天将明采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
9527King发布了新的文献求助10
12秒前
SZY发布了新的文献求助10
12秒前
12秒前
GGGT关注了科研通微信公众号
13秒前
无非发布了新的文献求助10
13秒前
研友_VZG7GZ应助殷勤的秋荷采纳,获得10
13秒前
林小鱼发布了新的文献求助10
14秒前
豪士赋完成签到,获得积分10
14秒前
15秒前
躞蹀发布了新的文献求助10
15秒前
失眠的耳机完成签到,获得积分10
16秒前
科研通AI2S应助zzb采纳,获得10
16秒前
17秒前
Zx_1993应助忽而今夏采纳,获得30
17秒前
善良的灵羊完成签到 ,获得积分10
17秒前
木子木子粒完成签到 ,获得积分10
19秒前
高挑的萝发布了新的文献求助10
20秒前
crazyfish完成签到,获得积分10
21秒前
21秒前
22秒前
情怀应助拾起地上六便士采纳,获得10
23秒前
高宇晖发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965