Predicting the malignancy of extremity soft-tissue tumors by an ultrasound-based radiomics signature

医学 无线电技术 恶性肿瘤 超声波 放射科 逻辑回归 队列 接收机工作特性 人工智能 病理 内科学 计算机科学
作者
Ao Li,Yu Hu,Xin‐Wu Cui,Xinhua Ye,Xiaojing Peng,Wenzhi Lv,C. Zhao
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851231217227
摘要

Background Accurate differentiation of extremity soft-tissue tumors (ESTTs) is important for treatment planning. Purpose To develop and validate an ultrasound (US) image-based radiomics signature to predict ESTTs malignancy. Material and Methods A dataset of US images from 108 ESTTs were retrospectively enrolled and divided into the training cohort (78 ESTTs) and validation cohort (30 ESTTs). A total of 1037 radiomics features were extracted from each US image. The most useful predictive radiomics features were selected by the maximum relevance and minimum redundancy method, least absolute shrinkage, and selection operator algorithm in the training cohort. A US-based radiomics signature was built based on these selected radiomics features. In addition, a conventional radiologic model based on the US features from the interpretation of two experienced radiologists was developed by a multivariate logistic regression algorithm. The diagnostic performances of the selected radiomics features, the US-based radiomics signature, and the conventional radiologic model for differentiating ESTTs were evaluated and compared in the validation cohort. Results In the validation cohort, the area under the curve (AUC), sensitivity, and specificity of the US-based radiomics signature for predicting ESTTs malignancy were 0.866, 84.2%, and 81.8%, respectively. The US-based radiomics signature had better diagnostic predictability for predicting ESTT malignancy than the best single radiomics feature and the conventional radiologic model (AUC = 0.866 vs. 0.719 vs. 0.681 for the validation cohort, all P <0.05). Conclusion The US-based radiomics signature could provide a potential imaging biomarker to accurately predict ESTT malignancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhan发布了新的文献求助10
刚刚
dunhuang完成签到,获得积分10
刚刚
冬至完成签到,获得积分10
刚刚
紧张的以山完成签到,获得积分10
刚刚
西升东落完成签到 ,获得积分10
刚刚
科研混子完成签到,获得积分10
刚刚
lixinlong完成签到,获得积分10
1秒前
之后再说咯完成签到 ,获得积分10
1秒前
Yurrrrt完成签到,获得积分10
1秒前
1秒前
飞0802完成签到,获得积分10
2秒前
菜菜鱼完成签到,获得积分10
2秒前
2秒前
3秒前
刘旦生完成签到,获得积分10
3秒前
LLY发布了新的文献求助10
3秒前
群青完成签到 ,获得积分10
3秒前
SciGPT应助无情白羊采纳,获得10
3秒前
九湖夷上完成签到,获得积分10
4秒前
sunnyxxq发布了新的文献求助10
4秒前
淡然水绿完成签到,获得积分10
4秒前
zonker完成签到,获得积分10
4秒前
paggyfight完成签到,获得积分10
4秒前
liukuangxu完成签到,获得积分10
5秒前
qwerhugo发布了新的文献求助10
5秒前
852应助Lina采纳,获得10
6秒前
6秒前
41完成签到,获得积分10
7秒前
北极星完成签到,获得积分10
7秒前
秋颦发布了新的文献求助10
7秒前
小林不熬夜完成签到,获得积分10
7秒前
泯恩仇完成签到,获得积分10
7秒前
科研小白完成签到,获得积分20
7秒前
阔达宝莹完成签到,获得积分20
8秒前
8秒前
sanages发布了新的文献求助10
8秒前
8秒前
123完成签到,获得积分10
9秒前
caochuang完成签到,获得积分10
9秒前
果果完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256776
求助须知:如何正确求助?哪些是违规求助? 4418917
关于积分的说明 13754171
捐赠科研通 4292127
什么是DOI,文献DOI怎么找? 2355327
邀请新用户注册赠送积分活动 1351803
关于科研通互助平台的介绍 1312558