CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images

计算机科学 人工智能 模式识别(心理学) 模块化设计 卷积神经网络 乳腺超声检查 特征提取 特征(语言学) 乳腺癌 人工神经网络 深度学习 模块化神经网络 计算机辅助诊断 医学 癌症 乳腺摄影术 内科学 时滞神经网络 哲学 操作系统 语言学
作者
Jarin Tasnim,Md. Kamrul Hasan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (1): 015018-015018 被引量:5
标识
DOI:10.1088/1361-6560/ad1319
摘要

Objective.Breast cancer is the major cause of cancer death among women worldwide. Deep learning-based computer-aided diagnosis (CAD) systems for classifying lesions in breast ultrasound images can help materialise the early detection of breast cancer and enhance survival chances.Approach.This paper presents a completely automated BUS diagnosis system with modular convolutional neural networks tuned with novel loss functions. The proposed network comprises a dynamic channel input enhancement network, an attention-guided InceptionV3-based feature extraction network, a classification network, and a parallel feature transformation network to map deep features into quantitative ultrasound (QUS) feature space. These networks function together to improve classification accuracy by increasing the separation of benign and malignant class-specific features and enriching them simultaneously. Unlike the categorical crossentropy (CCE) loss-based traditional approaches, our method uses two additional novel losses: class activation mapping (CAM)-based and QUS feature-based losses, to capacitate the overall network learn the extraction of clinically valued lesion shape and texture-related properties focusing primarily the lesion area for explainable AI (XAI).Main results.Experiments on four public, one private, and a combined breast ultrasound dataset are used to validate our strategy. The suggested technique obtains an accuracy of 97.28%, sensitivity of 93.87%, F1-score of 95.42% on dataset 1 (BUSI), and an accuracy of 91.50%, sensitivity of 89.38%, and F1-score of 89.31% on the combined dataset, consisting of 1494 images collected from hospitals in five demographic locations using four ultrasound systems of different manufacturers. These results outperform techniques reported in the literature by a considerable margin.Significance.The proposed CAD system provides diagnosis from the auto-focused lesion area of B-mode BUS images, avoiding the explicit requirement of any segmentation or region of interest extraction, and thus can be a handy tool for making accurate and reliable diagnoses even in unspecialized healthcare centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助南笙采纳,获得10
刚刚
刚刚
刚刚
1秒前
朱建强发布了新的文献求助10
1秒前
2秒前
znn发布了新的文献求助10
2秒前
谢谢完成签到 ,获得积分10
2秒前
111111发布了新的文献求助10
2秒前
2秒前
忐忑的王发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
tongitian完成签到,获得积分10
4秒前
4秒前
ky废品完成签到,获得积分10
4秒前
温暖成风完成签到,获得积分20
4秒前
愉快的语山应助午夜煎饼采纳,获得10
5秒前
浮游应助午夜煎饼采纳,获得10
5秒前
GGWEN完成签到,获得积分10
6秒前
英俊的铭应助黄文龙采纳,获得10
6秒前
6秒前
方梓言完成签到 ,获得积分20
7秒前
帅帅子发布了新的文献求助10
7秒前
Sandro完成签到,获得积分10
7秒前
谨慎的草丛完成签到,获得积分10
7秒前
7秒前
7秒前
奋斗幻姬完成签到,获得积分10
8秒前
玛卡巴卡发布了新的文献求助10
8秒前
tongitian发布了新的文献求助10
8秒前
lan发布了新的文献求助10
8秒前
8秒前
8秒前
Dawn完成签到,获得积分10
9秒前
9秒前
桐桐应助不知道起什么好采纳,获得10
10秒前
凯文发布了新的文献求助10
10秒前
勤恳的天亦应助zzzz采纳,获得20
10秒前
等乙天发布了新的文献求助10
10秒前
wangsy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885327
求助须知:如何正确求助?哪些是违规求助? 4170219
关于积分的说明 12940950
捐赠科研通 3931044
什么是DOI,文献DOI怎么找? 2156822
邀请新用户注册赠送积分活动 1175208
关于科研通互助平台的介绍 1079841