亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images

计算机科学 人工智能 模式识别(心理学) 模块化设计 卷积神经网络 乳腺超声检查 特征提取 特征(语言学) 乳腺癌 人工神经网络 深度学习 模块化神经网络 计算机辅助诊断 医学 癌症 乳腺摄影术 内科学 时滞神经网络 哲学 操作系统 语言学
作者
Jarin Tasnim,Md. Kamrul Hasan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (1): 015018-015018 被引量:5
标识
DOI:10.1088/1361-6560/ad1319
摘要

Objective.Breast cancer is the major cause of cancer death among women worldwide. Deep learning-based computer-aided diagnosis (CAD) systems for classifying lesions in breast ultrasound images can help materialise the early detection of breast cancer and enhance survival chances.Approach.This paper presents a completely automated BUS diagnosis system with modular convolutional neural networks tuned with novel loss functions. The proposed network comprises a dynamic channel input enhancement network, an attention-guided InceptionV3-based feature extraction network, a classification network, and a parallel feature transformation network to map deep features into quantitative ultrasound (QUS) feature space. These networks function together to improve classification accuracy by increasing the separation of benign and malignant class-specific features and enriching them simultaneously. Unlike the categorical crossentropy (CCE) loss-based traditional approaches, our method uses two additional novel losses: class activation mapping (CAM)-based and QUS feature-based losses, to capacitate the overall network learn the extraction of clinically valued lesion shape and texture-related properties focusing primarily the lesion area for explainable AI (XAI).Main results.Experiments on four public, one private, and a combined breast ultrasound dataset are used to validate our strategy. The suggested technique obtains an accuracy of 97.28%, sensitivity of 93.87%, F1-score of 95.42% on dataset 1 (BUSI), and an accuracy of 91.50%, sensitivity of 89.38%, and F1-score of 89.31% on the combined dataset, consisting of 1494 images collected from hospitals in five demographic locations using four ultrasound systems of different manufacturers. These results outperform techniques reported in the literature by a considerable margin.Significance.The proposed CAD system provides diagnosis from the auto-focused lesion area of B-mode BUS images, avoiding the explicit requirement of any segmentation or region of interest extraction, and thus can be a handy tool for making accurate and reliable diagnoses even in unspecialized healthcare centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
可爱丹彤发布了新的文献求助10
8秒前
TXZ06完成签到,获得积分10
10秒前
11秒前
千早爱音应助科研通管家采纳,获得10
39秒前
FashionBoy应助科研通管家采纳,获得10
39秒前
完美世界应助科研通管家采纳,获得10
39秒前
39秒前
40秒前
Gabriel发布了新的文献求助10
46秒前
mmmm完成签到,获得积分10
1分钟前
1分钟前
老广发布了新的文献求助10
1分钟前
2分钟前
老广发布了新的文献求助10
2分钟前
2分钟前
wrl2023发布了新的文献求助10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
wrl2023完成签到,获得积分10
2分钟前
老广发布了新的文献求助10
2分钟前
2分钟前
4分钟前
charih完成签到 ,获得积分10
4分钟前
xiaolang2004完成签到,获得积分10
4分钟前
4分钟前
4分钟前
LJL完成签到 ,获得积分10
4分钟前
5分钟前
luyao发布了新的文献求助10
5分钟前
YZChen完成签到,获得积分10
5分钟前
千早爱音完成签到,获得积分10
5分钟前
领导范儿应助可爱丹彤采纳,获得10
5分钟前
5分钟前
可爱丹彤发布了新的文献求助10
5分钟前
jin发布了新的文献求助10
5分钟前
6分钟前
6分钟前
boluohu发布了新的文献求助10
6分钟前
jin完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848652
捐赠科研通 4335991
什么是DOI,文献DOI怎么找? 2380709
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998