CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images

计算机科学 人工智能 模式识别(心理学) 模块化设计 卷积神经网络 乳腺超声检查 特征提取 特征(语言学) 乳腺癌 人工神经网络 深度学习 模块化神经网络 计算机辅助诊断 医学 癌症 乳腺摄影术 内科学 时滞神经网络 哲学 操作系统 语言学
作者
Jarin Tasnim,Md. Kamrul Hasan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (1): 015018-015018 被引量:5
标识
DOI:10.1088/1361-6560/ad1319
摘要

Objective.Breast cancer is the major cause of cancer death among women worldwide. Deep learning-based computer-aided diagnosis (CAD) systems for classifying lesions in breast ultrasound images can help materialise the early detection of breast cancer and enhance survival chances.Approach.This paper presents a completely automated BUS diagnosis system with modular convolutional neural networks tuned with novel loss functions. The proposed network comprises a dynamic channel input enhancement network, an attention-guided InceptionV3-based feature extraction network, a classification network, and a parallel feature transformation network to map deep features into quantitative ultrasound (QUS) feature space. These networks function together to improve classification accuracy by increasing the separation of benign and malignant class-specific features and enriching them simultaneously. Unlike the categorical crossentropy (CCE) loss-based traditional approaches, our method uses two additional novel losses: class activation mapping (CAM)-based and QUS feature-based losses, to capacitate the overall network learn the extraction of clinically valued lesion shape and texture-related properties focusing primarily the lesion area for explainable AI (XAI).Main results.Experiments on four public, one private, and a combined breast ultrasound dataset are used to validate our strategy. The suggested technique obtains an accuracy of 97.28%, sensitivity of 93.87%, F1-score of 95.42% on dataset 1 (BUSI), and an accuracy of 91.50%, sensitivity of 89.38%, and F1-score of 89.31% on the combined dataset, consisting of 1494 images collected from hospitals in five demographic locations using four ultrasound systems of different manufacturers. These results outperform techniques reported in the literature by a considerable margin.Significance.The proposed CAD system provides diagnosis from the auto-focused lesion area of B-mode BUS images, avoiding the explicit requirement of any segmentation or region of interest extraction, and thus can be a handy tool for making accurate and reliable diagnoses even in unspecialized healthcare centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅盼曼发布了新的文献求助10
1秒前
zxx完成签到 ,获得积分10
1秒前
皮皮卡完成签到,获得积分10
2秒前
哈哈镜阿姐完成签到,获得积分10
3秒前
杰小瑞发布了新的文献求助30
4秒前
4秒前
落寞凌波应助柠萌酸循环采纳,获得10
5秒前
5秒前
6秒前
lwy完成签到,获得积分10
6秒前
Xwu发布了新的文献求助10
6秒前
6秒前
Hello应助奋斗采纳,获得30
7秒前
8秒前
9秒前
桐桐应助卤蛋今天没学习采纳,获得10
9秒前
勤奋的火龙果完成签到 ,获得积分10
9秒前
王欧尼完成签到,获得积分10
10秒前
欢呼的渊思完成签到,获得积分10
10秒前
景穆发布了新的文献求助10
10秒前
Yxian完成签到,获得积分10
10秒前
Akim应助garatasari采纳,获得10
11秒前
李爱国应助聂落雁采纳,获得10
12秒前
comic发布了新的文献求助10
12秒前
13秒前
perseverance发布了新的文献求助10
13秒前
14秒前
少管我发布了新的文献求助20
14秒前
野性的枕头完成签到,获得积分10
14秒前
任媛媛发布了新的文献求助20
14秒前
景穆完成签到,获得积分10
15秒前
哈哈婷完成签到,获得积分10
15秒前
酷波er应助元气小Liu采纳,获得10
17秒前
17秒前
哈哈婷发布了新的文献求助10
18秒前
西瓜刀发布了新的文献求助10
19秒前
19秒前
ANG完成签到 ,获得积分10
20秒前
Xwu发布了新的文献求助20
20秒前
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075