CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images

计算机科学 人工智能 模式识别(心理学) 模块化设计 卷积神经网络 乳腺超声检查 特征提取 特征(语言学) 乳腺癌 人工神经网络 深度学习 模块化神经网络 计算机辅助诊断 医学 癌症 乳腺摄影术 内科学 时滞神经网络 哲学 操作系统 语言学
作者
Jarin Tasnim,Md. Kamrul Hasan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (1): 015018-015018 被引量:5
标识
DOI:10.1088/1361-6560/ad1319
摘要

Objective.Breast cancer is the major cause of cancer death among women worldwide. Deep learning-based computer-aided diagnosis (CAD) systems for classifying lesions in breast ultrasound images can help materialise the early detection of breast cancer and enhance survival chances.Approach.This paper presents a completely automated BUS diagnosis system with modular convolutional neural networks tuned with novel loss functions. The proposed network comprises a dynamic channel input enhancement network, an attention-guided InceptionV3-based feature extraction network, a classification network, and a parallel feature transformation network to map deep features into quantitative ultrasound (QUS) feature space. These networks function together to improve classification accuracy by increasing the separation of benign and malignant class-specific features and enriching them simultaneously. Unlike the categorical crossentropy (CCE) loss-based traditional approaches, our method uses two additional novel losses: class activation mapping (CAM)-based and QUS feature-based losses, to capacitate the overall network learn the extraction of clinically valued lesion shape and texture-related properties focusing primarily the lesion area for explainable AI (XAI).Main results.Experiments on four public, one private, and a combined breast ultrasound dataset are used to validate our strategy. The suggested technique obtains an accuracy of 97.28%, sensitivity of 93.87%, F1-score of 95.42% on dataset 1 (BUSI), and an accuracy of 91.50%, sensitivity of 89.38%, and F1-score of 89.31% on the combined dataset, consisting of 1494 images collected from hospitals in five demographic locations using four ultrasound systems of different manufacturers. These results outperform techniques reported in the literature by a considerable margin.Significance.The proposed CAD system provides diagnosis from the auto-focused lesion area of B-mode BUS images, avoiding the explicit requirement of any segmentation or region of interest extraction, and thus can be a handy tool for making accurate and reliable diagnoses even in unspecialized healthcare centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空豁举报内向小熊猫求助涉嫌违规
刚刚
奋斗土豆完成签到 ,获得积分10
刚刚
1秒前
花椒泡茶完成签到 ,获得积分10
2秒前
xyx945完成签到,获得积分10
3秒前
小雨发布了新的文献求助10
5秒前
我是老大应助梁燕回采纳,获得10
5秒前
Kiki发布了新的文献求助10
5秒前
7秒前
7秒前
小二郎应助an采纳,获得10
7秒前
思源应助仲大船采纳,获得10
9秒前
1128完成签到,获得积分20
10秒前
泠泠泠萘完成签到,获得积分10
10秒前
CodeCraft应助无非一念采纳,获得10
10秒前
11秒前
12秒前
桐桐应助ycy采纳,获得10
12秒前
慕青应助Surge采纳,获得10
12秒前
Jasper应助无心的仙人掌采纳,获得10
13秒前
周鑫硕关注了科研通微信公众号
13秒前
JaneChen完成签到,获得积分10
13秒前
白一寒完成签到,获得积分10
13秒前
不安青牛应助haoyooo采纳,获得10
14秒前
14秒前
打打应助葫芦家二娃采纳,获得10
14秒前
Lis完成签到,获得积分10
15秒前
洋葱完成签到,获得积分10
16秒前
冉冉完成签到,获得积分10
16秒前
纯真的莫茗完成签到,获得积分10
16秒前
安静诗霜完成签到 ,获得积分10
17秒前
Asma_2104发布了新的文献求助10
17秒前
小雨完成签到,获得积分10
17秒前
uu完成签到,获得积分20
17秒前
学习完成签到 ,获得积分10
17秒前
爱科研的小虞完成签到 ,获得积分10
18秒前
微笑的鱼关注了科研通微信公众号
18秒前
19秒前
清脆代桃发布了新的文献求助10
19秒前
五五我完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558868
求助须知:如何正确求助?哪些是违规求助? 3985681
关于积分的说明 12339795
捐赠科研通 3656197
什么是DOI,文献DOI怎么找? 2014213
邀请新用户注册赠送积分活动 1049037
科研通“疑难数据库(出版商)”最低求助积分说明 937443