CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images

计算机科学 人工智能 模式识别(心理学) 模块化设计 卷积神经网络 乳腺超声检查 特征提取 特征(语言学) 乳腺癌 人工神经网络 深度学习 模块化神经网络 计算机辅助诊断 医学 癌症 乳腺摄影术 内科学 时滞神经网络 哲学 操作系统 语言学
作者
Jarin Tasnim,Md. Kamrul Hasan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (1): 015018-015018 被引量:5
标识
DOI:10.1088/1361-6560/ad1319
摘要

Objective.Breast cancer is the major cause of cancer death among women worldwide. Deep learning-based computer-aided diagnosis (CAD) systems for classifying lesions in breast ultrasound images can help materialise the early detection of breast cancer and enhance survival chances.Approach.This paper presents a completely automated BUS diagnosis system with modular convolutional neural networks tuned with novel loss functions. The proposed network comprises a dynamic channel input enhancement network, an attention-guided InceptionV3-based feature extraction network, a classification network, and a parallel feature transformation network to map deep features into quantitative ultrasound (QUS) feature space. These networks function together to improve classification accuracy by increasing the separation of benign and malignant class-specific features and enriching them simultaneously. Unlike the categorical crossentropy (CCE) loss-based traditional approaches, our method uses two additional novel losses: class activation mapping (CAM)-based and QUS feature-based losses, to capacitate the overall network learn the extraction of clinically valued lesion shape and texture-related properties focusing primarily the lesion area for explainable AI (XAI).Main results.Experiments on four public, one private, and a combined breast ultrasound dataset are used to validate our strategy. The suggested technique obtains an accuracy of 97.28%, sensitivity of 93.87%, F1-score of 95.42% on dataset 1 (BUSI), and an accuracy of 91.50%, sensitivity of 89.38%, and F1-score of 89.31% on the combined dataset, consisting of 1494 images collected from hospitals in five demographic locations using four ultrasound systems of different manufacturers. These results outperform techniques reported in the literature by a considerable margin.Significance.The proposed CAD system provides diagnosis from the auto-focused lesion area of B-mode BUS images, avoiding the explicit requirement of any segmentation or region of interest extraction, and thus can be a handy tool for making accurate and reliable diagnoses even in unspecialized healthcare centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao发布了新的文献求助10
刚刚
旺仔先生发布了新的文献求助30
刚刚
NexusExplorer应助qiyi93采纳,获得30
刚刚
阿巴完成签到 ,获得积分10
刚刚
丘比特应助安文采纳,获得30
1秒前
七栀完成签到,获得积分10
1秒前
户户得振完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助风趣小松鼠采纳,获得10
1秒前
小茶完成签到 ,获得积分10
1秒前
SciGPT应助罗海艳采纳,获得10
2秒前
zzzzzyq完成签到 ,获得积分10
2秒前
小白完成签到,获得积分10
2秒前
精明的盼雁完成签到,获得积分10
3秒前
迷人的寒风完成签到,获得积分10
3秒前
shan发布了新的文献求助10
3秒前
小吕完成签到,获得积分10
3秒前
wan完成签到,获得积分10
3秒前
syw完成签到,获得积分10
3秒前
李至安发布了新的文献求助10
3秒前
Pan发布了新的文献求助10
3秒前
高大晓丝发布了新的文献求助80
4秒前
所所应助哈哈哈哈哈采纳,获得10
4秒前
4秒前
4秒前
会成功的小孩完成签到 ,获得积分10
5秒前
清沐完成签到,获得积分10
5秒前
SciGPT应助Wali采纳,获得10
5秒前
xiaoyao发布了新的文献求助100
5秒前
YHHHH完成签到,获得积分10
6秒前
Jomain完成签到,获得积分10
6秒前
6秒前
小黑之家完成签到,获得积分10
6秒前
Zenobia完成签到,获得积分10
6秒前
夜包子123完成签到,获得积分10
6秒前
爆米花应助甜甜千兰采纳,获得10
6秒前
传奇3应助霸气的大米采纳,获得10
6秒前
7秒前
7秒前
科研通AI6应助机智仙人掌采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392