检出限
胶质纤维酸性蛋白
免疫分析
色谱法
医学
分子生物学
化学
抗体
病理
免疫组织化学
生物
免疫学
作者
Min Ki Lee,Danishmalik Rafiq Sayyed,Hye-Jeong Kim,Jean‐Charles Sanchez,Sung Sik Hong,Seok Min Choi,H Y Kim,Eunhee Han,Hye Won Kang,Jeong‐Min Kim,Montaner Joan,Hanshin Kim,Hyojin Chae,Jong‐Myeon Park
标识
DOI:10.1016/j.cca.2024.117872
摘要
The goal of this study is to create a highly sensitive time-resolved fluorescence lateral flow immunoassay (TRF-LFIA) capable of concurrently measuring glial fibrillary acidic protein (GFAP) and the N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP). This assay is designed as a diagnostic tool and aims to provide an algorithm for stroke management, specifically for distinguishing between Ischemic stroke (IS) and Hemorrhagic stroke (HS). However, LFIA to quantify simultaneous serum NT-proBNP and GFAP are not yet available. We have developed and validated a novel TRF-LFIA for the simultaneous quantitative detection of NT-proBNP and GFAP. The sensitivity and reproducibility of the immunoassay were significantly improved by employing specific monoclonal antibodies linked to europium nanoparticles (EuNPs) that specifically target NT-proBNP and GFAP. The detection area on the nitrocellulose membrane featured sandwich-style complexes containing two test lines for NT-proBNP and GFAP, and one Control line. The fluorescence intensity of these test lines and control line was measured using an in-house developed Exdia TRF-Plus analyzer. As proof-of-concept, we enrolled patients suspected of having a stroke who were admitted within a specific time frame (6 h). A small amount of clinical specimen (serum) was used. To optimize the LFIA, an EuNPs conjugated antibodies were investigated to improve the detection sensitivity and decrease the background signal as well shorten the detection time. The Exdia TRF-LFIA cartridge offers a wide linear dynamic detection range, rapid detection, high sensitivity, and specificity. The limit of detection was determined to be 98 pg/mL for NT-proBNP and 68 pg/mL for GFAP, with minimal cross-reactivity. There were 200 clinical human serum samples that were used to evaluate this platform with high correlation. By combining the results of NT-proBNP and GFAP, we formulated an algorithm for the clinical assessment of Ischemic Stroke (IS) and Hemorrhagic Stroke (HS). According to our proposed algorithm, the combination of GFAP and NT-proBNP emerged as the most effective biomarker combination for distinguishing between IS and HS. Exdia TRF-LFIA shows great potential as a supplemental method for in vitro diagnostics in the laboratory or in other point-of-care testing (POCT) applications. Its development substantially decreases the diagnosis time for IS and HS. The proposed algorithm not only minimizes treatment delays but also lowers medical costs for patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI