Ultrahigh-strength silicone aerogels reinforced by an armor-like epoxy framework via a temperature-controlled sequential reaction strategy

气凝胶 材料科学 复合材料 环氧树脂 热导率 硅酮 极限抗拉强度 保温 多孔性 抗压强度 脆性 聚合物 图层(电子)
作者
Ailiang Yan,Yi Luo,Hao Tian,Helin Pan,Yu Cao,Bo Niu,Yayun Zhang,Donghui Long
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
标识
DOI:10.1016/j.jcis.2024.02.186
摘要

Aerogels with low density and high porosity are extremely attractive for high-performance insulation, but their brittleness, complicated fabrication and poor mechanical properties greatly limit their practical applications. Herein, we report an ultrahigh-strength silicone aerogel with an armor-like epoxy framework via a temperature-controlled sequential reaction strategy. The key to this synthesis is forming a Si-O-Si framework via the polycondensation of silanes at 100 °C, followed by in-situ armoring an epoxy framework via an intermolecular cyclization at an elevated temperature of 150 °C. Owing to the enhanced framework, the resulting aerogel could withstand capillary tension in the drying process, enabling it to be dried at ambient pressure without shrinkage. The obtained aerogel possesses a tunable density of 0.17–0.45 g/cm3 and ultrahigh-strength with compressive modulus up to 37.8–244.3 MPa, which surpassing other polymer-reinforced silicone aerogels by a factor of five in mechanical properties. It also demonstrates outstanding thermal insulation, with an extremely low thermal conductivity from 0.025 to 0.051 W m−1 K−1 at room temperature, and maintains thermal characteristics across a temperature range of −20 to 300 °C. Furthermore, the aerogel composites prepared by the reinforcement of low-density fiber mats have tunable densities of 0.36–0.87 g/cm3, much enhanced tensile strengths of 15.9–72.3 MPa and low thermal conductivities at room temperature of 0.042–0.078 W m−1 K−1. This study presents a cost-effective method for enhancing the production of silicone aerogel materials, offering considerable opportunities for their application in insulation, energy transport, and the aerospace sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1874发布了新的文献求助10
刚刚
刚刚
糟糕的富应助派大星采纳,获得10
刚刚
刚刚
刚刚
2秒前
3秒前
ggg完成签到,获得积分10
4秒前
小庸医完成签到 ,获得积分10
5秒前
1874完成签到,获得积分10
5秒前
pibanxian发布了新的文献求助10
5秒前
6秒前
打打应助WQY采纳,获得10
6秒前
辛勤德天完成签到,获得积分10
6秒前
LEMONS发布了新的文献求助10
7秒前
大山竹发布了新的文献求助10
7秒前
FashionBoy应助ok123采纳,获得10
8秒前
LFJ发布了新的文献求助10
10秒前
科研通AI2S应助en采纳,获得10
10秒前
研友_Z72O4n发布了新的文献求助10
10秒前
NexusExplorer应助LEMONS采纳,获得10
11秒前
acuter发布了新的文献求助10
12秒前
Hello应助一缕炊烟照月明采纳,获得10
12秒前
mzb给mzb的求助进行了留言
14秒前
研友_Z72O4n完成签到,获得积分20
16秒前
复杂的洋葱完成签到 ,获得积分10
17秒前
万能图书馆应助大山竹采纳,获得10
17秒前
WQY发布了新的文献求助10
17秒前
17秒前
zhangst发布了新的文献求助10
19秒前
20秒前
一路高飛完成签到,获得积分10
20秒前
22秒前
23秒前
诸葛翼德完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
25秒前
薄荷味发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159748
求助须知:如何正确求助?哪些是违规求助? 2810660
关于积分的说明 7889023
捐赠科研通 2469717
什么是DOI,文献DOI怎么找? 1315035
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012