DeepInfusion: A dynamic infusion based-neuro-symbolic AI model for segmentation of intracranial aneurysms

计算机科学 分割 人工智能 深度学习 人工神经网络 过程(计算) 机器学习 特征(语言学) 模式识别(心理学) 市场细分 深层神经网络 可靠性(半导体) 功率(物理) 哲学 语言学 物理 营销 量子力学 业务 操作系统
作者
Iram Abdullah,Ali Javed,Khalid Mahmood Malik,Ghaus M. Malik
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:551: 126510-126510
标识
DOI:10.1016/j.neucom.2023.126510
摘要

The detection and segmentation of cerebral aneurysms is a crucial step in the development of a clinical decision support system for estimating aneurysm rupture risk. However, accurately identifying and segmenting regions of interest in two-dimensional (2D) medical images is often challenging, particularly when using deep learning (DL) methods on small datasets with limited annotated data. The accuracy of DL approaches is often affected by the availability of large, annotated training datasets that are required for effective deep learning. Additionally, when using DL to differentiate aneurysms from arterial loops in 2D DSA images, DL can fail to detect aneurysms in areas where dye concentration is low. To address these issues and enhance the reliability and accuracy of aneurysm detection and segmentation methods, incorporating medical expert-advised, hand-crafted features can provide a clinical perspective to DL methods. This approach can help to improve the performance of DL methods by providing additional information that is not captured in the data. To this end, a novel Neuro-symbolic AI-based DeepInfusion model is proposed which allows for the infusion of human intellect through hand-crafted features into deep neural networks (DNNs), thus combining the strengths of DL with the knowledge and expertise of medical professionals. The proposed approach includes a novel technique for dynamic layer selection and feature weight adjustment during the model infusion process. The performance of the DeepInfusion model is evaluated on an in-house prepared dataset of 409 DSA images, and experimental results demonstrate the effectiveness of the proposed method for the segmentation of cerebral aneurysms. The model achieves an IOU score of 96.76% and an F1-score of 94.15% on unseen DSA images. The model is also tested on two publicly available datasets of Kvasir-SEG polyp and DRIVE for vessel segmentation of retinal images. The results show a significant improvement compared to existing methods, which indicates the generalizability of the approach in medical segmentation. The complete code for DeepInfusion is available on our GitHub repository at https://github.com/smileslab/deep-infusion/blob/main/deepinfusion.ipynb.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
trust完成签到,获得积分10
刚刚
刚刚
Laisy完成签到,获得积分10
刚刚
111完成签到,获得积分10
刚刚
1秒前
晨曦完成签到,获得积分10
2秒前
sill完成签到,获得积分10
3秒前
3秒前
微风完成签到,获得积分10
3秒前
痴情的雁易完成签到,获得积分10
4秒前
Ling完成签到,获得积分10
4秒前
my完成签到,获得积分10
5秒前
6秒前
7秒前
借一颗糖发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
124完成签到,获得积分10
9秒前
星辰大海应助rjj001022采纳,获得10
9秒前
微不足道发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
ALinaLi发布了新的文献求助10
11秒前
12秒前
fsm发布了新的文献求助20
12秒前
未月初二完成签到,获得积分10
12秒前
13秒前
sue发布了新的文献求助100
14秒前
量子星尘发布了新的文献求助10
14秒前
酷炫的白翠完成签到,获得积分10
15秒前
15秒前
英姑应助GGB采纳,获得10
15秒前
15秒前
geoffreyfan发布了新的文献求助10
16秒前
斯文败类应助未月初二采纳,获得10
17秒前
17秒前
fino发布了新的文献求助10
17秒前
Mullt完成签到 ,获得积分10
19秒前
小金鱼完成签到,获得积分20
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771