Multilayer 3D bioprinting and complex mechanical properties of alginate-gelatin mesostructures

明胶 3D生物打印 生物医学工程 材料科学 计算机科学 组织工程 化学 医学 生物化学
作者
Anahita Ahmadi Soufivand,Jessica Faber,Jan Hinrichsen,Silvia Budday
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41598-023-38323-2
摘要

In the biomedical field, extrusion-based 3D bioprinting has emerged as a promising technique to fabricate tissue replacements. However, a main challenge is to find suitable bioinks and reproducible procedures that ensure good printability and generate final printed constructs with high shape fidelity, similarity to the designed model, and controllable mechanical properties. In this study, our main goal is to 3D print multilayered structures from alginate-gelatin (AG) hydrogels and to quantify their complex mechanical properties with particular focus on the effects of the extrusion process and geometrical parameters, i.e. different mesostructures and macroporosities. We first introduce a procedure including a pre-cooling step and optimized printing parameters to control and improve the printability of AG hydrogels based on rheological tests and printability studies. Through this procedure, we significantly improve the printability and flow stability of AG hydrogels and successfully fabricate well-defined constructs similar to our design models. Our subsequent complex mechanical analyses highlight that the extrusion process and the mesostructure, characterized by pore size, layer height and filament diameter, significantly change the complex mechanical response of printed constructs. The presented approach and the corresponding results have important implications for future 3D bioprinting applications when aiming to produce replacements with good structural integrity and defined mechanical properties similar to the native tissue, especially in soft tissue engineering. The approach is also applicable to the printing of gelatin-based hydrogels with different accompanying materials, concentrations, or cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助涂山璟采纳,获得10
刚刚
21完成签到 ,获得积分10
刚刚
duanhuiyuan应助crazy采纳,获得10
1秒前
1秒前
1秒前
1秒前
李李完成签到,获得积分10
2秒前
明理采珊完成签到,获得积分10
2秒前
小蘑菇应助有人喜欢蓝采纳,获得10
2秒前
2秒前
3秒前
大个应助愤怒的勒采纳,获得10
4秒前
小王完成签到,获得积分10
4秒前
5秒前
舒心寇发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
xxxx完成签到,获得积分10
6秒前
7秒前
7秒前
lytelope发布了新的文献求助10
8秒前
蘇煦雯发布了新的文献求助10
8秒前
天天快乐应助叶秋寒采纳,获得10
8秒前
Hello应助冷傲芷雪采纳,获得10
8秒前
8秒前
小肥脸儿发布了新的文献求助10
9秒前
9秒前
雨濛濛发布了新的文献求助10
9秒前
9秒前
勇敢的心发布了新的文献求助10
10秒前
ww完成签到,获得积分20
10秒前
傻丢完成签到,获得积分10
12秒前
weird完成签到,获得积分10
12秒前
李浅墨发布了新的文献求助10
12秒前
aa完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454526
求助须知:如何正确求助?哪些是违规求助? 3049734
关于积分的说明 9018873
捐赠科研通 2738473
什么是DOI,文献DOI怎么找? 1502129
科研通“疑难数据库(出版商)”最低求助积分说明 694363
邀请新用户注册赠送积分活动 693011