Oil species identification based on fluorescence excitation-emission matrix and transformer-based deep learning

激发 荧光 波长 变压器油 生物系统 变压器 荧光光谱法 环境科学 材料科学 分析化学(期刊) 化学 色谱法 光电子学 光学 物理 生物 电压 量子力学
作者
Ming Xie,Lei Xie,Ying Li,Bing Han
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:302: 123059-123059 被引量:28
标识
DOI:10.1016/j.saa.2023.123059
摘要

After oil spills are found at sea, the identification on oil species can help determine the source of leakage and form the plan of post-accident treatment. Since the fluorometric characteristics of petroleum hydrocarbon reflect its molecular structure, the composition of oil spills could potentially be inferred using the fluorescence spectroscopy method. The excitation-emission matrix (EEM) includes additional fluorescence information in the dimension of excitation wavelength, which could be useful to identify oil species. This study proposed an oil species identification model using transformer network. The EEMs of oil pollutants are reconstructed into sequenced patch input that consists of the fluorometric spectra obtained under the different excitation wavelengths. The comparative experiments show that the proposed model can reduce the incorrect predictions and achieve higher identification accuracies than the regular convolutional neural networks that have been used in the previous studies. According to the structure of transformer network, an ablation experiment is also designed to evaluate the contributions of different input patches and seek for the optimal excitation wavelengths for oil species identification. The proposed model is expected to identify oil species, and even other fluorescent materials, based on the fluorometric spectra collected under multiple excitation wavelengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuroadsaas完成签到,获得积分10
1秒前
1秒前
李小宁发布了新的文献求助10
1秒前
Jia发布了新的文献求助10
2秒前
2秒前
小二郎应助6161采纳,获得10
2秒前
bkagyin应助壮观海云采纳,获得10
2秒前
JIAN发布了新的文献求助10
2秒前
3秒前
乐乐应助张启帆采纳,获得10
3秒前
加减法完成签到 ,获得积分10
3秒前
顺心纸鹤完成签到,获得积分10
4秒前
Chen完成签到 ,获得积分10
5秒前
顺风顺水顺科研完成签到,获得积分10
5秒前
白辞完成签到,获得积分10
5秒前
烟花应助李小宁采纳,获得10
6秒前
小蘑菇应助leela采纳,获得10
6秒前
6秒前
6秒前
7秒前
荀煜祺发布了新的文献求助10
7秒前
你都至少信我八分吧完成签到 ,获得积分10
7秒前
AnnaC完成签到,获得积分10
7秒前
8秒前
小天才完成签到,获得积分10
8秒前
9秒前
long发布了新的文献求助10
9秒前
wanci应助落寞臻采纳,获得10
9秒前
王志杰发布了新的文献求助10
9秒前
潘子发布了新的文献求助10
10秒前
10秒前
可靠的平彤完成签到,获得积分10
10秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
11秒前
11秒前
微光应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552469
求助须知:如何正确求助?哪些是违规求助? 4637218
关于积分的说明 14648146
捐赠科研通 4579088
什么是DOI,文献DOI怎么找? 2511302
邀请新用户注册赠送积分活动 1486474
关于科研通互助平台的介绍 1457556