Oil species identification based on fluorescence excitation-emission matrix and transformer-based deep learning

激发 荧光 波长 变压器油 生物系统 变压器 荧光光谱法 环境科学 材料科学 分析化学(期刊) 化学 色谱法 光电子学 光学 物理 生物 量子力学 电压
作者
Ming Xie,Lei Xie,Ying Li,Bing Han
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:302: 123059-123059 被引量:17
标识
DOI:10.1016/j.saa.2023.123059
摘要

After oil spills are found at sea, the identification on oil species can help determine the source of leakage and form the plan of post-accident treatment. Since the fluorometric characteristics of petroleum hydrocarbon reflect its molecular structure, the composition of oil spills could potentially be inferred using the fluorescence spectroscopy method. The excitation-emission matrix (EEM) includes additional fluorescence information in the dimension of excitation wavelength, which could be useful to identify oil species. This study proposed an oil species identification model using transformer network. The EEMs of oil pollutants are reconstructed into sequenced patch input that consists of the fluorometric spectra obtained under the different excitation wavelengths. The comparative experiments show that the proposed model can reduce the incorrect predictions and achieve higher identification accuracies than the regular convolutional neural networks that have been used in the previous studies. According to the structure of transformer network, an ablation experiment is also designed to evaluate the contributions of different input patches and seek for the optimal excitation wavelengths for oil species identification. The proposed model is expected to identify oil species, and even other fluorescent materials, based on the fluorometric spectra collected under multiple excitation wavelengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助短歌终采纳,获得10
2秒前
3秒前
wanci应助蚝油盗梨采纳,获得10
4秒前
修管子完成签到 ,获得积分0
4秒前
5秒前
yyxhahaha完成签到,获得积分10
8秒前
唐唐发布了新的文献求助10
10秒前
Hello应助超级的千青采纳,获得10
10秒前
在水一方完成签到,获得积分0
11秒前
哈哈hehe发布了新的文献求助20
13秒前
13秒前
上官若男应助Linda采纳,获得10
15秒前
17秒前
清脆绮烟发布了新的文献求助10
18秒前
蚝油盗梨发布了新的文献求助10
20秒前
田様应助健忘远山采纳,获得10
20秒前
深情安青应助哈哈hehe采纳,获得20
21秒前
安详的自中完成签到,获得积分10
21秒前
22秒前
小蘑菇应助潇洒的平松采纳,获得10
22秒前
wanci应助葛力采纳,获得10
23秒前
勤奋大地完成签到,获得积分10
24秒前
失眠紫青应助深情的幼南采纳,获得10
25秒前
25秒前
25秒前
李健应助怕黑的纸鹤采纳,获得10
26秒前
29秒前
29秒前
敏感人杰发布了新的文献求助10
34秒前
34秒前
123发布了新的文献求助10
36秒前
iNk应助从容的雪碧采纳,获得20
37秒前
领导范儿应助王359采纳,获得30
39秒前
小甑完成签到,获得积分10
39秒前
42秒前
yx_cheng应助mgh采纳,获得10
43秒前
43秒前
zhzzhz完成签到,获得积分10
44秒前
冷酷俊驰完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517