Oil species identification based on fluorescence excitation-emission matrix and transformer-based deep learning

激发 荧光 波长 变压器油 生物系统 变压器 荧光光谱法 环境科学 材料科学 分析化学(期刊) 化学 色谱法 光电子学 光学 物理 生物 量子力学 电压
作者
Ming Xie,Lei Xie,Ying Li,Bing Han
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:302: 123059-123059 被引量:9
标识
DOI:10.1016/j.saa.2023.123059
摘要

After oil spills are found at sea, the identification on oil species can help determine the source of leakage and form the plan of post-accident treatment. Since the fluorometric characteristics of petroleum hydrocarbon reflect its molecular structure, the composition of oil spills could potentially be inferred using the fluorescence spectroscopy method. The excitation-emission matrix (EEM) includes additional fluorescence information in the dimension of excitation wavelength, which could be useful to identify oil species. This study proposed an oil species identification model using transformer network. The EEMs of oil pollutants are reconstructed into sequenced patch input that consists of the fluorometric spectra obtained under the different excitation wavelengths. The comparative experiments show that the proposed model can reduce the incorrect predictions and achieve higher identification accuracies than the regular convolutional neural networks that have been used in the previous studies. According to the structure of transformer network, an ablation experiment is also designed to evaluate the contributions of different input patches and seek for the optimal excitation wavelengths for oil species identification. The proposed model is expected to identify oil species, and even other fluorescent materials, based on the fluorometric spectra collected under multiple excitation wavelengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruxing完成签到,获得积分10
刚刚
影像大侠完成签到,获得积分10
刚刚
852应助HYG采纳,获得30
1秒前
麦麦完成签到,获得积分10
1秒前
田様应助Isabel采纳,获得10
1秒前
gezid完成签到 ,获得积分10
1秒前
2秒前
2秒前
niu1发布了新的文献求助10
2秒前
Intro发布了新的文献求助10
2秒前
舒服的冬天完成签到,获得积分10
3秒前
Helical给Helical的求助进行了留言
3秒前
甜蜜晓绿完成签到,获得积分10
3秒前
4秒前
钱多多完成签到,获得积分10
4秒前
baekhyun完成签到,获得积分20
4秒前
4秒前
dpp发布了新的文献求助10
4秒前
今今完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
打打应助无情的白桃采纳,获得10
6秒前
香蕉觅云应助与光同晨采纳,获得10
7秒前
7秒前
小蘑菇应助clm采纳,获得10
7秒前
yhnsag完成签到,获得积分10
7秒前
Lin完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
Rain发布了新的文献求助10
9秒前
butiflow完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
务实的唇膏完成签到,获得积分10
10秒前
Will完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762