Artificial intelligence in detecting left atrial appendage thrombus by transthoracic echocardiography and clinical features: the Left Atrial Thrombus on Transoesophageal Echocardiography (LATTEE) registry

医学 血栓 心房颤动 射血分数 心脏病学 内科学 心脏复律 导管消融 队列 置信区间 接收机工作特性 前瞻性队列研究 试验预测值 烧蚀 放射科 心力衰竭
作者
Konrad Pieszko,Jarosław Hiczkiewicz,Katarzyna Łojewska,Beata Uziębło‐Życzkowska,Paweł Krzesiński,Monika Gawałko,Monika Budnik,Katarzyna Starzyk,Beata Wożakowska−Kapłon,Ludmiła Daniłowicz‐Szymanowicz,Damian Kaufmann,Maciej Wójcik,Robert Błaszczyk,Katarzyna Mizia-Stec,Maciej T. Wybraniec,Katarzyna Kosmalska,Marcin Fijałkowski,Anna Szymańska,Mirosław Dłużniewski,Michał Kucio,Maciej Haberka,Karolina Kupczyńska,Błażej Michalski,Anna Tomaszuk‐Kazberuk,Katarzyna Wilk‐Śledziewska,Renata Wachnicka‐Truty,Marek Koziński,Jacek Kwieciński,Rafał Wolny,Ewa Kowalik,Iga Kolasa,Agnieszka Jurek,Jan Budzianowski,Paweł Burchardt,Agnieszka Kapłon‐Cieślicka,Piotr Slomka
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (1): 32-41 被引量:2
标识
DOI:10.1093/eurheartj/ehad431
摘要

Abstract Aims Transoesophageal echocardiography (TOE) is often performed before catheter ablation or cardioversion to rule out the presence of left atrial appendage thrombus (LAT) in patients on chronic oral anticoagulation (OAC), despite associated discomfort. A machine learning model [LAT-artificial intelligence (AI)] was developed to predict the presence of LAT based on clinical and transthoracic echocardiography (TTE) features. Methods and results Data from a 13-site prospective registry of patients who underwent TOE before cardioversion or catheter ablation were used. LAT-AI was trained to predict LAT using data from 12 sites (n = 2827) and tested externally in patients on chronic OAC from two sites (n = 1284). Areas under the receiver operating characteristic curve (AUC) of LAT-AI were compared with that of left ventricular ejection fraction (LVEF) and CHA2DS2-VASc score. A decision threshold allowing for a 99% negative predictive value was defined in the development cohort. A protocol where TOE in patients on chronic OAC is performed depending on the LAT-AI score was validated in the external cohort. In the external testing cohort, LAT was found in 5.5% of patients. LAT-AI achieved an AUC of 0.85 [95% confidence interval (CI): 0.82–0.89], outperforming LVEF (0.81, 95% CI 0.76–0.86, P < .0001) and CHA2DS2-VASc score (0.69, 95% CI: 0.63–0.7, P < .0001) in the entire external cohort. Based on the proposed protocol, 40% of patients on chronic OAC from the external cohort would safely avoid TOE. Conclusion LAT-AI allows accurate prediction of LAT. A LAT-AI-based protocol could be used to guide the decision to perform TOE despite chronic OAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou发布了新的文献求助10
刚刚
刚刚
yu完成签到,获得积分10
刚刚
方俊发布了新的文献求助10
刚刚
雪山紫阳完成签到,获得积分10
1秒前
max给max的求助进行了留言
2秒前
我是老大应助伯赏满天采纳,获得10
2秒前
芒果味的包子完成签到,获得积分10
3秒前
3秒前
小二郎应助略略略采纳,获得10
3秒前
bkagyin应助牛马采纳,获得10
4秒前
4秒前
Lucas应助欢呼宛秋采纳,获得20
4秒前
hyx完成签到,获得积分10
6秒前
兰陵萧笑声完成签到,获得积分10
7秒前
打打应助lan采纳,获得10
7秒前
7秒前
8秒前
Sunny发布了新的文献求助10
8秒前
万能图书馆应助洺全采纳,获得10
10秒前
清新的安波完成签到,获得积分10
11秒前
科研通AI2S应助兰陵萧笑声采纳,获得10
11秒前
12秒前
科目三应助棋士采纳,获得10
13秒前
13秒前
13秒前
可爱的函函应助鬼笔环肽采纳,获得20
13秒前
14秒前
lan完成签到,获得积分20
14秒前
16秒前
16秒前
传奇3应助66采纳,获得10
17秒前
怨念深重发布了新的文献求助10
18秒前
lan发布了新的文献求助10
19秒前
正直纸鹤完成签到,获得积分10
20秒前
棋士发布了新的文献求助10
20秒前
21秒前
ExtroGod发布了新的文献求助10
21秒前
577发布了新的文献求助10
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954557
求助须知:如何正确求助?哪些是违规求助? 3500718
关于积分的说明 11100747
捐赠科研通 3231204
什么是DOI,文献DOI怎么找? 1786337
邀请新用户注册赠送积分活动 869958
科研通“疑难数据库(出版商)”最低求助积分说明 801737