Artificial intelligence in detecting left atrial appendage thrombus by transthoracic echocardiography and clinical features: the Left Atrial Thrombus on Transoesophageal Echocardiography (LATTEE) registry

医学 血栓 心房颤动 射血分数 心脏病学 内科学 心脏复律 导管消融 队列 置信区间 接收机工作特性 前瞻性队列研究 试验预测值 烧蚀 放射科 心力衰竭
作者
Konrad Pieszko,Jarosław Hiczkiewicz,Katarzyna Łojewska,Beata Uziębło‐Życzkowska,Paweł Krzesiński,Monika Gawałko,Monika Budnik,Katarzyna Starzyk,Beata Wożakowska−Kapłon,Ludmiła Daniłowicz‐Szymanowicz,Damian Kaufmann,Maciej Wójcik,Robert Błaszczyk,Katarzyna Mizia-Stec,Maciej T. Wybraniec,Katarzyna Kosmalska,Marcin Fijałkowski,Anna Szymańska,Mirosław Dłużniewski,Michał Kucio,Maciej Haberka,Karolina Kupczyńska,Błażej Michalski,Anna Tomaszuk‐Kazberuk,Katarzyna Wilk‐Śledziewska,Renata Wachnicka‐Truty,Marek Koziński,Jacek Kwieciński,Rafał Wolny,Ewa Kowalik,Iga Kolasa,Agnieszka Jurek,Jan Budzianowski,Paweł Burchardt,Agnieszka Kapłon‐Cieślicka,Piotr Slomka
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (1): 32-41 被引量:2
标识
DOI:10.1093/eurheartj/ehad431
摘要

Abstract Aims Transoesophageal echocardiography (TOE) is often performed before catheter ablation or cardioversion to rule out the presence of left atrial appendage thrombus (LAT) in patients on chronic oral anticoagulation (OAC), despite associated discomfort. A machine learning model [LAT-artificial intelligence (AI)] was developed to predict the presence of LAT based on clinical and transthoracic echocardiography (TTE) features. Methods and results Data from a 13-site prospective registry of patients who underwent TOE before cardioversion or catheter ablation were used. LAT-AI was trained to predict LAT using data from 12 sites (n = 2827) and tested externally in patients on chronic OAC from two sites (n = 1284). Areas under the receiver operating characteristic curve (AUC) of LAT-AI were compared with that of left ventricular ejection fraction (LVEF) and CHA2DS2-VASc score. A decision threshold allowing for a 99% negative predictive value was defined in the development cohort. A protocol where TOE in patients on chronic OAC is performed depending on the LAT-AI score was validated in the external cohort. In the external testing cohort, LAT was found in 5.5% of patients. LAT-AI achieved an AUC of 0.85 [95% confidence interval (CI): 0.82–0.89], outperforming LVEF (0.81, 95% CI 0.76–0.86, P < .0001) and CHA2DS2-VASc score (0.69, 95% CI: 0.63–0.7, P < .0001) in the entire external cohort. Based on the proposed protocol, 40% of patients on chronic OAC from the external cohort would safely avoid TOE. Conclusion LAT-AI allows accurate prediction of LAT. A LAT-AI-based protocol could be used to guide the decision to perform TOE despite chronic OAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田123关注了科研通微信公众号
刚刚
2秒前
haha完成签到,获得积分10
3秒前
研友_nPoWNL发布了新的文献求助10
3秒前
转圈晕倒完成签到,获得积分10
3秒前
8letters发布了新的文献求助10
4秒前
Sci发布了新的文献求助10
4秒前
4秒前
5秒前
Noldor应助深情冷雪采纳,获得10
5秒前
嘟嘟发布了新的文献求助10
6秒前
搜集达人应助Silole采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
Xin完成签到,获得积分10
7秒前
8秒前
阿花阿花发布了新的文献求助10
8秒前
缘来如风发布了新的文献求助10
9秒前
学物理的小汁完成签到,获得积分10
9秒前
秋秋发布了新的文献求助10
9秒前
10秒前
好困应助gloriafeng采纳,获得10
10秒前
123发布了新的文献求助10
11秒前
黄小翰完成签到,获得积分10
11秒前
天天快乐应助zd采纳,获得10
11秒前
刻苦冰颜发布了新的文献求助10
11秒前
javavwv发布了新的文献求助10
12秒前
12秒前
12秒前
阿巴阿巴发布了新的文献求助200
12秒前
耍酷大炮发布了新的文献求助10
12秒前
皮卡皮卡发布了新的文献求助10
13秒前
SunHY完成签到,获得积分10
13秒前
研友_V8Qmr8发布了新的文献求助10
13秒前
13秒前
Gilana发布了新的文献求助10
14秒前
14秒前
学术妲己完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148527
求助须知:如何正确求助?哪些是违规求助? 2799622
关于积分的说明 7836197
捐赠科研通 2457012
什么是DOI,文献DOI怎么找? 1307684
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601655