亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence in detecting left atrial appendage thrombus by transthoracic echocardiography and clinical features: the Left Atrial Thrombus on Transoesophageal Echocardiography (LATTEE) registry

医学 血栓 心房颤动 射血分数 心脏病学 内科学 心脏复律 导管消融 队列 置信区间 接收机工作特性 前瞻性队列研究 试验预测值 烧蚀 放射科 心力衰竭
作者
Konrad Pieszko,Jarosław Hiczkiewicz,Katarzyna Łojewska,Beata Uziębło‐Życzkowska,Paweł Krzesiński,Monika Gawałko,Monika Budnik,Katarzyna Starzyk,Beata Wożakowska‐Kapłon,Ludmiła Daniłowicz−Szymanowicz,Damian Kaufmann,Maciej Wójcik,Robert Błaszczyk,Katarzyna Mizia­‐Stec,Maciej Wybraniec,Katarzyna Kosmalska,Marcin Fijałkowski,Anna Hrynkiewicz−Szymańska,Mirosław Dłużniewski,Michał Kucio
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (1): 32-41 被引量:21
标识
DOI:10.1093/eurheartj/ehad431
摘要

Abstract Aims Transoesophageal echocardiography (TOE) is often performed before catheter ablation or cardioversion to rule out the presence of left atrial appendage thrombus (LAT) in patients on chronic oral anticoagulation (OAC), despite associated discomfort. A machine learning model [LAT-artificial intelligence (AI)] was developed to predict the presence of LAT based on clinical and transthoracic echocardiography (TTE) features. Methods and results Data from a 13-site prospective registry of patients who underwent TOE before cardioversion or catheter ablation were used. LAT-AI was trained to predict LAT using data from 12 sites (n = 2827) and tested externally in patients on chronic OAC from two sites (n = 1284). Areas under the receiver operating characteristic curve (AUC) of LAT-AI were compared with that of left ventricular ejection fraction (LVEF) and CHA2DS2-VASc score. A decision threshold allowing for a 99% negative predictive value was defined in the development cohort. A protocol where TOE in patients on chronic OAC is performed depending on the LAT-AI score was validated in the external cohort. In the external testing cohort, LAT was found in 5.5% of patients. LAT-AI achieved an AUC of 0.85 [95% confidence interval (CI): 0.82–0.89], outperforming LVEF (0.81, 95% CI 0.76–0.86, P < .0001) and CHA2DS2-VASc score (0.69, 95% CI: 0.63–0.7, P < .0001) in the entire external cohort. Based on the proposed protocol, 40% of patients on chronic OAC from the external cohort would safely avoid TOE. Conclusion LAT-AI allows accurate prediction of LAT. A LAT-AI-based protocol could be used to guide the decision to perform TOE despite chronic OAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
桐桐应助111采纳,获得10
8秒前
9秒前
爱听歌凤灵完成签到,获得积分10
11秒前
今日发布了新的文献求助10
14秒前
Lucas应助七色光采纳,获得10
38秒前
充电宝应助彭蓬采纳,获得10
40秒前
Splaink完成签到 ,获得积分10
42秒前
44秒前
47秒前
科研通AI5应助花骨头采纳,获得10
50秒前
今日完成签到,获得积分10
52秒前
蕊蕊应助奥黛丽悟空采纳,获得10
59秒前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
Owen应助xuan采纳,获得30
1分钟前
七色光发布了新的文献求助10
1分钟前
科研通AI5应助杭州007采纳,获得30
1分钟前
1分钟前
科研通AI5应助111采纳,获得10
1分钟前
杭州007完成签到,获得积分10
1分钟前
volcano发布了新的文献求助10
1分钟前
九月亦星完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xuan发布了新的文献求助30
1分钟前
杭州007发布了新的文献求助30
1分钟前
1分钟前
1分钟前
完美世界应助展锋采纳,获得10
1分钟前
蟹治猿完成签到 ,获得积分10
1分钟前
月满西楼完成签到,获得积分10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
如意冥茗完成签到 ,获得积分10
2分钟前
IShowSpeed完成签到,获得积分10
2分钟前
3分钟前
展锋发布了新的文献求助10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918