Multi-Agent Deep Reinforcement Learning for Multi-Echelon Inventory Management

强化学习 钢筋 库存管理 业务 人工智能 计算机科学 运营管理 工程类 心理学 社会心理学
作者
Xiaotian Liu,Ming Hu,Chunyi Peng,Yaodong Yang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:9
标识
DOI:10.2139/ssrn.4262186
摘要

We apply Multi-Agent Deep Reinforcement Learning (MADRL) to inventory management problems with multiple echelons and evaluate MADRL's performance to minimize the overall costs of a supply chain. We also examine whether the upfront-only information-sharing mechanism used in MADRL helps alleviate the bullwhip effect in a supply chain. We apply Heterogeneous-Agent Proximal Policy Optimization (HAPPO) on the multi-echelon inventory management problems in both a serial supply chain and a supply chain network. Our results show that policies constructed by HAPPO achieve lower overall costs than policies constructed by single-agent deep reinforcement learning and other heuristic policies. Also, the application of HAPPO results in a less significant bullwhip effect than policies constructed by single-agent deep reinforcement learning where information is not shared among actors. Somewhat surprisingly, when applying HAPPO, the system achieves the lowest overall costs when the minimization target for each actor is a combination of its own costs and the overall costs of the system, and the fully self-interested reward target performs near-optimally, while one would expect using the overall costs of the system as a reward target for each actor would be optimal in training the models. Our results provide a new perspective on the benefit of information sharing inside the supply chain that helps alleviate the bullwhip effect and improve the overall performance of the system. Upfront information sharing and action coordination in model training among actors are essential, with the former more essential, for improving a supply chain's overall performance when applying MADRL. Neither actors being fully self-interested nor actors being fully system-focused leads to the optimal performance of policies learned and constructed by MADRL. Our results also verify MADRL's potential in solving various multi-echelon inventory management problems with complex supply chain structures and in non-stationary market environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子焱发布了新的文献求助10
1秒前
明明明明明明明明z完成签到,获得积分10
1秒前
DMA50完成签到 ,获得积分10
2秒前
lili发布了新的文献求助10
2秒前
深山何处钟声鸣完成签到 ,获得积分10
2秒前
乐乐发布了新的文献求助10
2秒前
2秒前
下雨发布了新的文献求助10
2秒前
蔷薇完成签到,获得积分10
3秒前
优秀剑愁完成签到 ,获得积分10
3秒前
saxg_hu完成签到,获得积分10
4秒前
xinxin完成签到,获得积分10
4秒前
4秒前
sscss完成签到,获得积分10
5秒前
Dfish完成签到,获得积分10
5秒前
老迟到的访文完成签到,获得积分10
5秒前
陈怼怼完成签到,获得积分10
6秒前
6秒前
keke完成签到,获得积分10
6秒前
6秒前
诸笑白完成签到,获得积分10
6秒前
lllllllll发布了新的文献求助10
7秒前
赘婿应助Lee采纳,获得10
8秒前
小吗完成签到,获得积分10
10秒前
momo应助COLINWU采纳,获得10
10秒前
橙子完成签到,获得积分10
11秒前
11秒前
orixero应助junjie采纳,获得10
12秒前
fuchao完成签到,获得积分20
13秒前
结实的德地完成签到,获得积分10
13秒前
13秒前
活力的映易完成签到,获得积分10
14秒前
小尘埃完成签到,获得积分10
14秒前
沉默的若冰完成签到,获得积分10
14秒前
14秒前
嘿嘿完成签到 ,获得积分20
15秒前
16秒前
YF完成签到,获得积分10
16秒前
顾矜应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117632
求助须知:如何正确求助?哪些是违规求助? 2767740
关于积分的说明 7692575
捐赠科研通 2423007
什么是DOI,文献DOI怎么找? 1286676
科研通“疑难数据库(出版商)”最低求助积分说明 620445
版权声明 599870