帕金
品脱1
自噬
线粒体
甲酸
化学
细胞生物学
分子生物学
生物化学
生物
细胞凋亡
粒体自噬
内科学
帕金森病
医学
疾病
作者
Nan Chen,Jiao Yan,Yundi Hu,Lele Hao,Herong Liu,Huifang Yang
摘要
This study aimed to explore PINK1/Parkin's role in methanol metabolite formic acid-induced autophagy in PC12 cells and provide a theoretical basis for elucidating methanol-induced neurotoxicity. After treatment with different formic acid concentrations, we observed the morphology and mitochondria of PC12 cells. We used an ultra-micro enzyme kit to detect the mitochondrial Na+ -K+ -ATPase and Ca2+ -Mg2+ -ATPase activities; a JC-1 kit to detect changes in the mitochondrial membrane potential (MMP); MDC staining to detect the autophagy levels; and western blotting to measure the expression levels of the mitochondrial marker protein COX IV and the autophagy-related proteins Beclin1, P62 and LC3II/LC3I, and the mitochondrial and cytoplasmic levels of PINK1, Parkin and P-Parkin. Compared with the control group, the mitochondrial diameters, the mitochondrial Na+ -K+ -ATP and Ca2+ -Mg2+ -ATPase activities, the MMP, and the COX IV expression levels decreased significantly (P < 0.05). The fluorescence signal intensity (indicating autophagy); relative Beclin1 and LC3II/LC3I protein expression levels; and relative mitochondrial PINK1, Parkin and P-Parkin levels increased significantly, and the relative P62 protein expression levels and relative cytoplasmic PINK1, Parkin and P-Parkin levels decreased significantly (P < 0.05) compared with the control group. Thus, formic acid alters mitochondrial morphology, causes mitochondrial dysfunction, affects the PINK/Parkin pathway and, thus, activates the process of mitochondrial autophagy.
科研通智能强力驱动
Strongly Powered by AbleSci AI