Forecasting green roofs’ potential in improving building thermal performance and mitigating urban heat island in the Mediterranean area: An artificial intelligence-based approach

绿色屋顶 屋顶 城市热岛 环境科学 地中海气候 人工神经网络 反射面 土木工程 气象学 植被(病理学) 计算机科学 工程类 地理 机器学习 医学 病理 考古 数学 曲面(拓扑) 几何学
作者
Domenico Mazzeo,Nicoletta Matera,Giorgia Peri,Gianluca Scaccianoce
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:222: 119879-119879 被引量:36
标识
DOI:10.1016/j.applthermaleng.2022.119879
摘要

Green roofs are widely used in hot or cold climates mainly because they are capable to improve the energy efficiency of buildings and, when implemented at a large scale, reducing air pollution and the urban heat island effect (UHI) in urban contexts. Artificial Neural Network (ANN) black-box algorithms are a valid alternative to studying complex systems. However, the literature highlights - quite surprisingly – none of the available research refers to coupling ANNs and green roofs in the Mediterranean area, where green roofs are instead considered one of the most suitable technologies to reduce the high cooling demand. Therefore, the objective of this research work is to create and validate an ANN for the prediction of the monthly green roof’s internal and external surface temperatures and the monthly internal air temperature, starting from different green roof parameters and climatic variables. Specifically, the ANN was created with reference to a Mediterranean climate considering an existing green roof on a building of the University of Palermo characterized by a cooling demand predominance; 180 green roof configurations, obtained by varying the characteristic parameters of vegetation (plant height, leaf area index and leaf reflectivity) and the substrate thickness and thermophysical properties (lightweight and heavyweight), were dynamically simulated on an hourly basis to build the training dataset. In addition, other 72 green roof configurations were simulated to generate the dataset for the validation purpose of the ANN accuracy. The optimal ANN-related architecture consists of 90 neurons with one hidden layer and guarantees very high accuracy predictions. The outcomes of this research represent a useful tool to determine the thermal response of green roofs and their impact on the building energy demand and indoor thermal comfort and UHI mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨YY完成签到,获得积分10
刚刚
ZZZ完成签到,获得积分10
刚刚
无心的秋珊完成签到 ,获得积分10
1秒前
小娟娟完成签到,获得积分20
1秒前
啦啦啦啦发布了新的文献求助10
2秒前
爱笑的冷风完成签到,获得积分10
4秒前
曹问芙完成签到,获得积分10
4秒前
4秒前
cgs完成签到,获得积分20
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得30
5秒前
所所应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
一十六发布了新的文献求助10
5秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
快乐滑板完成签到,获得积分0
6秒前
6秒前
别管我了应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
梵樱应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
Nature完成签到,获得积分10
7秒前
慕青应助岁月如歌采纳,获得10
7秒前
赘婿应助昌笑白采纳,获得10
7秒前
汉堡包应助lt采纳,获得10
8秒前
8秒前
8秒前
慕子默发布了新的文献求助10
9秒前
领导范儿应助羊蓝蓝蓝采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095