Forecasting green roofs’ potential in improving building thermal performance and mitigating urban heat island in the Mediterranean area: An artificial intelligence-based approach

绿色屋顶 屋顶 城市热岛 环境科学 地中海气候 人工神经网络 反射面 土木工程 气象学 植被(病理学) 计算机科学 工程类 地理 机器学习 医学 几何学 考古 数学 病理 曲面(拓扑)
作者
Domenico Mazzeo,Nicoletta Matera,Giorgia Peri,Gianluca Scaccianoce
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:222: 119879-119879 被引量:34
标识
DOI:10.1016/j.applthermaleng.2022.119879
摘要

Green roofs are widely used in hot or cold climates mainly because they are capable to improve the energy efficiency of buildings and, when implemented at a large scale, reducing air pollution and the urban heat island effect (UHI) in urban contexts. Artificial Neural Network (ANN) black-box algorithms are a valid alternative to studying complex systems. However, the literature highlights - quite surprisingly – none of the available research refers to coupling ANNs and green roofs in the Mediterranean area, where green roofs are instead considered one of the most suitable technologies to reduce the high cooling demand. Therefore, the objective of this research work is to create and validate an ANN for the prediction of the monthly green roof’s internal and external surface temperatures and the monthly internal air temperature, starting from different green roof parameters and climatic variables. Specifically, the ANN was created with reference to a Mediterranean climate considering an existing green roof on a building of the University of Palermo characterized by a cooling demand predominance; 180 green roof configurations, obtained by varying the characteristic parameters of vegetation (plant height, leaf area index and leaf reflectivity) and the substrate thickness and thermophysical properties (lightweight and heavyweight), were dynamically simulated on an hourly basis to build the training dataset. In addition, other 72 green roof configurations were simulated to generate the dataset for the validation purpose of the ANN accuracy. The optimal ANN-related architecture consists of 90 neurons with one hidden layer and guarantees very high accuracy predictions. The outcomes of this research represent a useful tool to determine the thermal response of green roofs and their impact on the building energy demand and indoor thermal comfort and UHI mitigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助ming采纳,获得10
2秒前
4秒前
科目三应助jzx采纳,获得10
4秒前
5秒前
带头大哥应助王晓风采纳,获得100
6秒前
左囧完成签到,获得积分10
6秒前
谨慎凡桃发布了新的文献求助10
6秒前
6秒前
不怕困难完成签到,获得积分10
6秒前
晓山青完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
doctorbba发布了新的文献求助10
8秒前
化学发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助问下他采纳,获得10
9秒前
10秒前
10秒前
北世发布了新的文献求助10
12秒前
ming发布了新的文献求助10
14秒前
懒鸭鸭完成签到,获得积分10
14秒前
15秒前
15秒前
星星发布了新的文献求助30
16秒前
jzx发布了新的文献求助10
16秒前
UNIQUE完成签到,获得积分10
17秒前
17秒前
Ava应助发发发采纳,获得10
17秒前
nickel发布了新的文献求助10
18秒前
化学完成签到,获得积分10
18秒前
19秒前
21秒前
21秒前
不舍天真发布了新的文献求助10
21秒前
23秒前
布布发布了新的文献求助10
24秒前
25秒前
cinn完成签到 ,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111061
求助须知:如何正确求助?哪些是违规求助? 2761270
关于积分的说明 7664744
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282426
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478