牙周膜干细胞
牙龈卟啉单胞菌
牙周炎
运行x2
化学
脂多糖
炎症
下调和上调
碱性磷酸酶
分子生物学
体外
免疫学
生物
内科学
医学
成骨细胞
生物化学
酶
基因
作者
Jing-jiao Wang,Zhang Cheng-lei,Xiaoqian Guo,Changyi Yang
标识
DOI:10.1016/j.jsbmb.2023.106347
摘要
Periodontitis is a chronic inflammatory disease caused by Porphyromonas gingivalis and other bacteria, and human periodontal ligament stem cells (hPDLSCs) are a promising candidate for the treatment of periodontal supporting tissue defects. This study aimed to investigate the effect of 1α,25-dihydroxyvitamin D3 [1,25(OH)2VitD3] on osteogenic differentiation of hPDLSCs in an in vitro periodontitis model and whether it can improve inflammatory status. hPDLSCs were in vitro isolated and identified. After treatment with 1,25(OH)2VitD3 and ultrapure pure Porphyromonas gingivalis lipopolysaccharide (LPS-G), the viability of hPDLSCs was detected using Cell Counting Kit-8, the expressions of osteogenic markers and inflammatory genes using Western blotting and quantitative reverse transcription PCR (qRT-PCR), the levels of inflammatory factors in cells using enzyme linked immunosorbent assay (ELISA), and the fluorescence signal intensity of osteoblastic markers and inflammatory genes in cells using immunofluorescence assay. It was found that 1,25(OH)2VitD3 reversed the inhibition of hPDLSCs proliferation by LPS-G; LPS-G exhibited inhibitory effect on ALP, Runx2, and OPN expressions, and such inhibitory effect was significantly weakened when co-acting with 1,25(OH)2VitD3. Meanwhile, LPS-G upregulated the expressions of inflammatory genes IL-1β and Casp1, whereas 1,25(OH)2VitD3 antagonized such an effect and improved the inflammatory status. In conclusion, 1,25(OH)2VitD3 can reverse the inhibitory effect of LPS-G on hPDLSCs proliferation and osteogenic differentiation and suppress LPS-G-induced upregulation of inflammatory gene expressions.
科研通智能强力驱动
Strongly Powered by AbleSci AI