Preparation and toughness mechanism of in-situ Ti3AlC2 enhanced and toughened TiAl3 matrix composites

材料科学 复合材料 断裂韧性 微观结构 穿晶断裂 复合数 材料的强化机理 抗弯强度 质量分数 晶界 晶间断裂
作者
Li'na Gao,Shufeng Li,Lei Liu,Xinghua Ji,Xin Zhang,Bo Li,Shaolong Li,Xin Li,Wenge Chen,Deng Pan
出处
期刊:Intermetallics [Elsevier]
卷期号:161: 107963-107963
标识
DOI:10.1016/j.intermet.2023.107963
摘要

In this paper, dense MAX phase Ti3AlC2 enhanced and toughened TiAl3 matrix composites with mass fractions of 10∼40% were prepared by in-situ reaction via powder metallurgy route which using TiH2, Al and TiC powder as the starting materials. Then, the microstructure and phase structure of the composites were characterized, and the relationship between microstructure, mechanical properties and fracture mechanism was systematically investigated. The results show that the lath-like (micron level) and fine-needle-like (submicron level) reinforcements Ti3AlC2 are uniformly distributed in TiAl3 matrix. With the increases of mass fraction of reinforcements, the average grain size of the TiAl3 matrix decreases remarkably from 7.6 μm to 4.8 μm, indicating that the reinforcements Ti3AlC2 can effectively refine the matrix grains and plays a good pinning effect on the TiAl3 matrix. The prepared Ti3AlC2/TiAl3 composite with 30% mass fraction exhibits excellent comprehensive mechanical properties: the Vickers hardness, flexural strength, fracture toughness is 575 ± 5 HV, 470 ± 18 MPa, and 3.83 ± 0.05 MPa m1/2, 14.1%, 174.9% and 117.6% higher than that of the pure TiAl3 matrix, respectively. Both the strengthening and toughening effects are significant. The strengthening mechanism are fine grain strengthening and deformation strengthening, while the toughening mechanism is a synthetic effect in terms of crack deflection, crack bifurcation, grain refinement and stress-induced microcrack. Fracture analysis shows that the fracture mechanism is transgranular (cleavage) fracture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听风轻语完成签到,获得积分10
刚刚
1秒前
yuni123完成签到,获得积分10
1秒前
852应助真谛采纳,获得10
2秒前
Taylor完成签到,获得积分10
2秒前
2秒前
3秒前
追寻的阑悦完成签到,获得积分20
5秒前
CipherSage应助青藤采纳,获得10
5秒前
5秒前
cyb完成签到,获得积分10
5秒前
天天发布了新的文献求助10
5秒前
6秒前
6秒前
mengxiaohai完成签到,获得积分10
6秒前
6秒前
丘比特应助咖啡豆采纳,获得10
7秒前
7秒前
9秒前
TADEGUO关注了科研通微信公众号
9秒前
10秒前
10秒前
10秒前
天天完成签到,获得积分20
10秒前
10秒前
真谛完成签到,获得积分10
12秒前
guozi发布了新的文献求助10
12秒前
阿玖发布了新的文献求助10
12秒前
梨子LZBL完成签到,获得积分20
13秒前
13秒前
Philthee完成签到,获得积分10
13秒前
ding应助儒雅的灯泡采纳,获得30
13秒前
懒洋洋完成签到,获得积分20
13秒前
najibveto发布了新的文献求助30
13秒前
annie发布了新的文献求助10
14秒前
LIU关注了科研通微信公众号
14秒前
15秒前
amberchan发布了新的文献求助10
15秒前
真谛发布了新的文献求助10
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685