析氧
材料科学
多元统计
氧气
金属有机骨架
化学工程
纳米技术
电化学
电极
化学
物理化学
有机化学
计算机科学
机器学习
工程类
吸附
作者
Pengfei Dong,Yuming Gu,Ge‐Hua Wen,Rengan Luo,Song‐Song Bao,Jing Ma,Jianping Lei
出处
期刊:Small
[Wiley]
日期:2023-06-13
卷期号:19 (40)
被引量:11
标识
DOI:10.1002/smll.202301473
摘要
Multivariate metal-organic framework (MOF) is an ideal electrocatalytic material due to the synergistic effect of multiple metal active sites. In this study, a series of ternary M-NiMOF (M = Co, Cu) through a simple self-templated strategy that the Co/Cu MOF isomorphically grows in situ on the surface of NiMOF is designed. Owing to the electron rearrange of adjacent metals, the ternary CoCu-NiMOFs demonstrate the improved intrinsic electrocatalytic activity. At optimized conditions, the ternary Co3 Cu-Ni2 MOFs nanosheets give the excellent oxygen evolution reaction (OER) performance of current density of 10 mA cm-2 at low overpotential of 288 mV with a Tafel slope of 87 mV dec-1 , which is superior to that of bimetallic nanosheet and ternary microflowers. The low free energy change of potential-determining step identifies that the OER process is favorable at Cu-Co concerted sites along with strong synergistic effect of Ni nodes. Partially oxidized metal sites also reduce the electron density, thus accelerating the OER catalytic rate. The self-templated strategy provides a universal tool to design multivariate MOF electrocatalysts for highly efficient energy transduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI