光动力疗法
免疫
免疫系统
两亲性
内质网
免疫原性细胞死亡
佐剂
活性氧
膜
生物物理学
材料科学
光敏剂
癌症研究
细胞生物学
化学
程序性细胞死亡
细胞凋亡
生物化学
生物
免疫学
光化学
复合材料
有机化学
聚合物
共聚物
作者
Tianfu Zhang,Xing Yang,Xinwen Ou,Michelle M. S. Lee,Jianyu Zhang,Changhuo Xu,Xinghua Yu,Ping Gong,Jacky W. Y. Lam,Pengfei Zhang,Ben Zhong Tang
标识
DOI:10.1002/adma.202303186
摘要
Although photodynamic therapy (PDT) for thorough cancer treatment is hindered by the limited generation of reactive oxygen species (ROS) with short lifetime from photosensitizers, PDT-induced antitumor immune response remedies the defects. Previous studies show that inducing immunogenic cell deaths is an attractive approach to activate antitumor immunity, which confers a robust adjuvanticity to dying cancer cells. In this work, amphiphilic luminogens with aggregation-induced emission characteristics (AIEgens) are rationally designed and synthesized. By modulating the hydrophobic π-bridge and zwitterionic functional groups, these AIEgens exhibit tunable organelle specificity to lysosome, endoplasmic reticulum, and plasma membrane and enhance ROS generation ability. Notably, the membrane-targeting AIEgen namely TPS-2 induces cell death and membrane rupture via PDT to facilitate the release of antigens and activation of immune cells. Furthermore, the size-controlled TPS-2 nanoaggregates are found to serve as an adjuvant, promoting antigen accumulation and delivery to sufficiently boost the in vivo antitumor immunity by only one dose injection in a prophylactic tumor vaccination model. This work thus provides new insights into optimizing AIE photosensitizers via a hydrophobicity-hydrophilicity balance strategy for evoking an antitumor immunity and directly suppressing the distanced tumor. A single small-molecular system for PDT-stimulated antitumor immunity is envisioned.
科研通智能强力驱动
Strongly Powered by AbleSci AI