Deep learning-assisted magnetized inductively coupled plasma discharge modeling

感应耦合等离子体 等离子体 等离子体原子发射光谱 材料科学 化学 纳米技术 物理 核物理学
作者
Zhao Yang,Wenyi Chen,Zongcheng Miao,Pengfei Yang,Xiao‐Hua Zhou
出处
期刊:Plasma Sources Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6595/ad98bf
摘要

Abstract In recent years, magnetized inductively coupled plasma (MICP) has been proposed as an improved version of inductively coupled plasma to meet the increasing production process requirements. However, due to the more complex structure of the plasma system, numerical simulations face challenges such as modeling difficulty, model convergence issues, and long computation times. In this paper, a deep neural network (DNN) with a multi-hidden layer structure is developed based on deep learning technology to replace traditional fluid simulations. This approach aims to study the discharge characteristics and plasma chemistry of argon-oxygen MICP more efficiently. The simulation data from the fluid model is used to train the neural network. The well-trained DNN can efficiently and accurately predict the target plasma characteristics under new discharge parameters, such as electron density, ionization rate, and particle reaction rate. The effectiveness of the DNN is verified by comparing its predictions with experimental diagnostics and fluid simulation results. Compared to the traditional fluid simulation, which takes thousands of seconds, the DNN only requires hundreds of seconds to produce highly consistent prediction results, thereby improving computational efficiency by approximately nine times. The prediction results of the
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winifred完成签到 ,获得积分10
刚刚
圣迭戈发布了新的文献求助10
1秒前
星辰大海应助LIXI采纳,获得10
1秒前
CodeCraft应助糟糕的可乐采纳,获得10
1秒前
2秒前
嗨Honey完成签到 ,获得积分10
3秒前
小二郎应助袁月辉采纳,获得10
4秒前
光123发布了新的文献求助10
4秒前
4秒前
Syk_发布了新的文献求助10
4秒前
sunaq发布了新的文献求助10
4秒前
单薄含巧完成签到,获得积分10
4秒前
Erica完成签到,获得积分10
4秒前
4秒前
4秒前
纯真抽屉完成签到,获得积分10
5秒前
5秒前
奋斗的绝悟完成签到,获得积分10
5秒前
Kim完成签到,获得积分10
5秒前
6秒前
啦啦啦l完成签到,获得积分10
6秒前
健忘捕完成签到,获得积分10
6秒前
6秒前
樱铃完成签到,获得积分10
6秒前
迷路的蛋挞完成签到,获得积分20
7秒前
66wudi发布了新的文献求助10
8秒前
领导范儿应助Min采纳,获得10
8秒前
Jasper应助瀚泛采纳,获得10
9秒前
9秒前
omgggg完成签到,获得积分10
10秒前
JamesPei应助yao采纳,获得10
10秒前
天天快乐应助Syk_采纳,获得10
10秒前
萌酱完成签到,获得积分10
10秒前
11秒前
11秒前
15987完成签到,获得积分10
11秒前
PPP应助马騳骉采纳,获得200
11秒前
111完成签到,获得积分10
11秒前
无花果应助天熙采纳,获得10
11秒前
刘佳琦19947完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498