Deep learning-assisted magnetized inductively coupled plasma discharge modeling

感应耦合等离子体 等离子体 等离子体原子发射光谱 材料科学 化学 纳米技术 物理 核物理学
作者
Zhao Yang,Wenyi Chen,Zongcheng Miao,Pengfei Yang,Xiao‐Hua Zhou
出处
期刊:Plasma Sources Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6595/ad98bf
摘要

Abstract In recent years, magnetized inductively coupled plasma (MICP) has been proposed as an improved version of inductively coupled plasma to meet the increasing production process requirements. However, due to the more complex structure of the plasma system, numerical simulations face challenges such as modeling difficulty, model convergence issues, and long computation times. In this paper, a deep neural network (DNN) with a multi-hidden layer structure is developed based on deep learning technology to replace traditional fluid simulations. This approach aims to study the discharge characteristics and plasma chemistry of argon-oxygen MICP more efficiently. The simulation data from the fluid model is used to train the neural network. The well-trained DNN can efficiently and accurately predict the target plasma characteristics under new discharge parameters, such as electron density, ionization rate, and particle reaction rate. The effectiveness of the DNN is verified by comparing its predictions with experimental diagnostics and fluid simulation results. Compared to the traditional fluid simulation, which takes thousands of seconds, the DNN only requires hundreds of seconds to produce highly consistent prediction results, thereby improving computational efficiency by approximately nine times. The prediction results of the
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助tu采纳,获得30
1秒前
mechefy完成签到,获得积分10
1秒前
鲤鱼萧完成签到,获得积分10
2秒前
宗笑晴完成签到,获得积分10
2秒前
3秒前
小蘑菇应助头发乱了采纳,获得10
3秒前
代萌萌发布了新的文献求助10
4秒前
jucy发布了新的文献求助50
4秒前
4秒前
Lz完成签到,获得积分10
4秒前
Hello应助葛辉辉采纳,获得10
4秒前
秦嘉旎完成签到,获得积分10
5秒前
华仔应助通~采纳,获得10
5秒前
万能图书馆应助半颗橙子采纳,获得10
5秒前
樱铃完成签到,获得积分10
6秒前
6秒前
上官若男应助俭朴的明轩采纳,获得10
6秒前
1199发布了新的文献求助10
7秒前
英姑应助包容的过客采纳,获得10
8秒前
标致的战斗机完成签到,获得积分10
8秒前
科研人发布了新的文献求助10
9秒前
hl完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI5应助dingdong采纳,获得10
10秒前
Jasper应助幸福胡萝卜采纳,获得10
10秒前
爱看文献的小羽毛完成签到,获得积分10
10秒前
11秒前
song99发布了新的文献求助10
11秒前
11秒前
juan完成签到 ,获得积分10
11秒前
徐安琪完成签到,获得积分10
12秒前
小蘑菇应助深爱不疑采纳,获得200
12秒前
头发乱了完成签到,获得积分10
12秒前
12秒前
格兰兔米兔完成签到,获得积分10
12秒前
12秒前
12秒前
Luna完成签到 ,获得积分10
13秒前
汪鸡毛发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762