An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay

计算机科学 图形 重症监护室 人工智能 单位(环理论) 数据科学 机器学习 理论计算机科学 心理学 数学教育 医学 重症监护医学
作者
Tianjian Guo,Indranil R. Bardhan,Ying Ding,Shichang Zhang
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:36 (3): 1478-1501 被引量:2
标识
DOI:10.1287/isre.2023.0029
摘要

We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jia发布了新的文献求助10
1秒前
天天快乐应助言寺采纳,获得30
1秒前
多米发布了新的文献求助10
2秒前
mxp完成签到 ,获得积分10
2秒前
Archer完成签到,获得积分10
2秒前
ssion完成签到 ,获得积分10
2秒前
可爱安莲发布了新的文献求助10
3秒前
臭嘴橘子完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
sunflowertxy完成签到,获得积分10
4秒前
lky发布了新的文献求助10
5秒前
眼睛大的胡萝卜完成签到,获得积分10
5秒前
闪闪靖荷完成签到,获得积分10
5秒前
6秒前
xcxElf发布了新的文献求助10
6秒前
wz发布了新的文献求助10
6秒前
7秒前
7秒前
CipherSage应助王哥采纳,获得10
8秒前
樱悼柳雪完成签到,获得积分10
8秒前
8秒前
SciGPT应助ysxl采纳,获得10
9秒前
9秒前
善学以致用应助100采纳,获得10
9秒前
腼腆的梦岚关注了科研通微信公众号
10秒前
10秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
犹豫的梦山完成签到,获得积分10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
子车茗应助平平采纳,获得10
11秒前
子车茗应助平平采纳,获得10
11秒前
星辰大海应助平平采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
wefs发布了新的文献求助20
11秒前
Ava应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249