An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay

计算机科学 图形 重症监护室 人工智能 单位(环理论) 数据科学 机器学习 理论计算机科学 心理学 数学教育 医学 重症监护医学
作者
Tianjian Guo,Indranil R. Bardhan,Ying Ding,Shichang Zhang
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/isre.2023.0029
摘要

We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助Joshua采纳,获得10
1秒前
2秒前
2秒前
3秒前
蒋时晏应助陶醉薯片采纳,获得30
3秒前
3秒前
执着的灯泡完成签到,获得积分10
3秒前
睡到自然醒完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Musen完成签到,获得积分10
4秒前
科研通AI5应助叫滚滚采纳,获得10
4秒前
4秒前
123456发布了新的文献求助10
4秒前
大方安白发布了新的文献求助10
5秒前
Hello应助正直冰露采纳,获得10
5秒前
lyy完成签到 ,获得积分10
6秒前
沈随便发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
灵巧荆发布了新的文献求助10
7秒前
丘奇发布了新的文献求助10
7秒前
7秒前
7秒前
通~发布了新的文献求助10
8秒前
8秒前
搜集达人应助FloppyWow采纳,获得10
8秒前
Musen发布了新的文献求助10
8秒前
pluto应助金宝采纳,获得10
9秒前
ii完成签到 ,获得积分10
9秒前
温言发布了新的文献求助10
9秒前
CodeCraft应助务实盼海采纳,获得10
10秒前
orixero应助JUSTs0so采纳,获得10
10秒前
11秒前
欣欣子完成签到 ,获得积分10
11秒前
顺利毕业发布了新的文献求助10
11秒前
西奥完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762