An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay

计算机科学 图形 重症监护室 人工智能 单位(环理论) 数据科学 机器学习 理论计算机科学 心理学 数学教育 医学 重症监护医学
作者
Tianjian Guo,Indranil R. Bardhan,Ying Ding,Shichang Zhang
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/isre.2023.0029
摘要

We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xch发布了新的文献求助10
刚刚
刚刚
发财小鱼完成签到 ,获得积分10
2秒前
思源应助俊逸千山采纳,获得10
2秒前
orixero应助高冷的呆呆鱼采纳,获得10
2秒前
Owen应助动听海雪采纳,获得10
4秒前
4秒前
4秒前
5秒前
杨19980625发布了新的文献求助10
5秒前
5秒前
Lily发布了新的文献求助10
5秒前
小蘑菇应助冷酷的枕头采纳,获得10
7秒前
所所应助xch采纳,获得10
7秒前
8秒前
LiverStronger发布了新的文献求助10
8秒前
深情安青应助ssr采纳,获得10
9秒前
9秒前
好运发布了新的文献求助10
9秒前
小珂完成签到,获得积分10
10秒前
辣目童子完成签到 ,获得积分10
10秒前
hahaha6789y完成签到,获得积分10
11秒前
波波鱼完成签到,获得积分10
12秒前
美好斓发布了新的文献求助10
12秒前
高挑的果汁完成签到,获得积分10
13秒前
爆米花应助Lily采纳,获得10
14秒前
keyan发布了新的文献求助10
14秒前
14秒前
SAY完成签到,获得积分10
14秒前
15秒前
huxiaoyu应助huntme采纳,获得10
15秒前
xch完成签到,获得积分10
16秒前
害羞小蚂蚁完成签到,获得积分10
16秒前
Yan完成签到,获得积分10
17秒前
17秒前
万能图书馆应助愉快的乾采纳,获得10
18秒前
充电宝应助欧的佩帕采纳,获得10
18秒前
赘婿应助郭丰硕采纳,获得10
20秒前
君子不器完成签到 ,获得积分10
20秒前
tgrnf发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574159
求助须知:如何正确求助?哪些是违规求助? 3994206
关于积分的说明 12364971
捐赠科研通 3667420
什么是DOI,文献DOI怎么找? 2021241
邀请新用户注册赠送积分活动 1055370
科研通“疑难数据库(出版商)”最低求助积分说明 942774