A pretrained transformer model for decoding individual glucose dynamics from continuous glucose monitoring data

解码方法 变压器 连续血糖监测 动力学(音乐) 计算机科学 生物 内分泌学 电信 物理 工程类 糖尿病 电气工程 电压 声学 血糖性
作者
Yurun Lu,Dan Liu,Zhongming Liang,Rui Liu,Pei Chen,Yitong Liu,Jiachen Li,Zhanying Feng,Lei M. Li,Bin Sheng,Weiping Jia,Luonan Chen,Huating Li,Yong Wang
出处
期刊:National Science Review [Oxford University Press]
标识
DOI:10.1093/nsr/nwaf039
摘要

Abstract Continuous glucose monitoring (CGM) technology has grown rapidly to track real-time blood glucose levels and trends with improved sensor accuracy. The ease of use and wide availability of CGM would facilitate safe and effective decision making for diabetes management. Here, we developed an attention-based deep learning model, CGMformer, pretrained on a well-controlled and diverse corpus of CGM data to represent individual's intrinsic metabolic state and enable clinical applications. During pretraining, CGMformer encodes glucose dynamics including glucose level, fluctuation, hyperglycemia, and hypoglycemia into latent space with self-supervised learning. It shows generalizability in imputing glucose value across five external datasets with different populations and metabolic states (MAE=3.7 mg/dl). We then finetuned CGMformer towards a diverse panel of downstream tasks in the screening of diabetes and complications using task-specific data, which demonstrated a consistently boosted predictive accuracy over direct fine-tuning on a single task (AUROC=0.914 for T2D screening and 0.741 for complication screening). By learning an intrinsic representation of individual's glucose dynamics, CGMformer classify non-diabetic individuals into six clusters with elevated T2D risks, and identify a specific cluster with lean body-shape but high risk of glucose metabolism disorders, which is overlooked by traditional glucose measurements. Furthermore, CGMformer achieves high accuracy in predicting individual's postprandial glucose response with dietary modelling (Pearson correlation coefficient=0.763) and helps personalized dietary recommendation. Overall, CGMformer pretrains a transformer neural network architecture to learn an intrinsic representation by borrowing information from a large amount of daily glucose profiles, demonstrates predictive capabilities fine-tuning towards a broad range of downstream applications, and holds promise in early warning of T2D and recommendation for lifestyle modification in diabetes management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人荷花发布了新的文献求助10
1秒前
hj完成签到,获得积分20
2秒前
science完成签到,获得积分10
2秒前
4秒前
大模型应助李木槿采纳,获得10
6秒前
Jasper应助wodeqiche2007采纳,获得10
8秒前
8秒前
9秒前
10秒前
科目三应助南宫书瑶采纳,获得10
11秒前
赘婿应助Joker采纳,获得10
11秒前
11秒前
12秒前
SDSD发布了新的文献求助10
12秒前
企鹅嗷嗷发布了新的文献求助10
14秒前
一独白完成签到 ,获得积分20
14秒前
二一而已发布了新的文献求助10
14秒前
米修应助迷人荷花采纳,获得10
15秒前
agyh发布了新的文献求助10
15秒前
15秒前
16秒前
烟花应助icey采纳,获得10
16秒前
ZnCu应助清图采纳,获得10
17秒前
19秒前
妞妞完成签到,获得积分10
20秒前
Milesgao发布了新的文献求助10
21秒前
小张医生发布了新的文献求助10
21秒前
22秒前
天天快乐应助Crazy_Runner采纳,获得10
22秒前
oo完成签到 ,获得积分10
23秒前
Cindy发布了新的文献求助10
24秒前
25秒前
SDF发布了新的文献求助20
25秒前
25秒前
科目三应助欣喜的成仁采纳,获得10
25秒前
牛魔王干饭完成签到,获得积分10
28秒前
28秒前
陈霸下。发布了新的文献求助10
32秒前
32秒前
32秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416214
求助须知:如何正确求助?哪些是违规求助? 3017901
关于积分的说明 8883001
捐赠科研通 2705481
什么是DOI,文献DOI怎么找? 1483630
科研通“疑难数据库(出版商)”最低求助积分说明 685769
邀请新用户注册赠送积分活动 680897