亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A pretrained transformer model for decoding individual glucose dynamics from continuous glucose monitoring data

概化理论 人工智能 机器学习 深度学习 计算机科学 低血糖 人工神经网络 医学 内分泌学 统计 糖尿病 数学
作者
Yurun Lu,Dan Liu,Zhongming Liang,Rui Liu,Pei Chen,Yitong Liu,Jiachen Li,Zhanying Feng,Lei M. Li,Bin Sheng,Weiping Jia,Luonan Chen,Huating Li,Yong Wang
出处
期刊:National Science Review [Oxford University Press]
被引量:2
标识
DOI:10.1093/nsr/nwaf039
摘要

Abstract Continuous glucose monitoring (CGM) technology has grown rapidly to track real-time blood glucose levels and trends with improved sensor accuracy. The ease of use and wide availability of CGM would facilitate safe and effective decision making for diabetes management. Here, we developed an attention-based deep learning model, CGMformer, pretrained on a well-controlled and diverse corpus of CGM data to represent individual's intrinsic metabolic state and enable clinical applications. During pretraining, CGMformer encodes glucose dynamics including glucose level, fluctuation, hyperglycemia, and hypoglycemia into latent space with self-supervised learning. It shows generalizability in imputing glucose value across five external datasets with different populations and metabolic states (MAE=3.7 mg/dl). We then finetuned CGMformer towards a diverse panel of downstream tasks in the screening of diabetes and complications using task-specific data, which demonstrated a consistently boosted predictive accuracy over direct fine-tuning on a single task (AUROC=0.914 for T2D screening and 0.741 for complication screening). By learning an intrinsic representation of individual's glucose dynamics, CGMformer classify non-diabetic individuals into six clusters with elevated T2D risks, and identify a specific cluster with lean body-shape but high risk of glucose metabolism disorders, which is overlooked by traditional glucose measurements. Furthermore, CGMformer achieves high accuracy in predicting individual's postprandial glucose response with dietary modelling (Pearson correlation coefficient=0.763) and helps personalized dietary recommendation. Overall, CGMformer pretrains a transformer neural network architecture to learn an intrinsic representation by borrowing information from a large amount of daily glucose profiles, demonstrates predictive capabilities fine-tuning towards a broad range of downstream applications, and holds promise in early warning of T2D and recommendation for lifestyle modification in diabetes management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxidixi发布了新的文献求助10
2秒前
万能图书馆应助搞怪腊肠采纳,获得10
5秒前
6秒前
bkagyin应助科研通管家采纳,获得30
6秒前
Zirong发布了新的文献求助10
10秒前
10秒前
BakerStreet发布了新的文献求助10
14秒前
淡定从霜完成签到 ,获得积分10
14秒前
BakerStreet完成签到,获得积分10
23秒前
奶茶发布了新的文献求助10
24秒前
磊少完成签到 ,获得积分10
24秒前
万能图书馆应助小中医采纳,获得10
27秒前
务实书包完成签到,获得积分10
28秒前
细心薯片完成签到 ,获得积分10
34秒前
35秒前
雷锋完成签到,获得积分10
35秒前
LIU完成签到 ,获得积分10
35秒前
乐乐应助袁咏琳冲冲冲采纳,获得10
36秒前
Shyee完成签到 ,获得积分10
38秒前
干饭大王应助奶茶采纳,获得10
38秒前
yunxiao完成签到 ,获得积分10
41秒前
风轻萤完成签到,获得积分10
43秒前
pojian完成签到,获得积分10
46秒前
汉堡包应助Q123ba叭采纳,获得10
48秒前
奶茶完成签到,获得积分10
50秒前
Hcc完成签到 ,获得积分10
52秒前
57秒前
科研通AI2S应助满意的世界采纳,获得10
59秒前
Q123ba叭发布了新的文献求助10
1分钟前
李爱国应助可乐采纳,获得10
1分钟前
单薄乐珍完成签到 ,获得积分0
1分钟前
赝品也烂漫完成签到,获得积分10
1分钟前
1分钟前
Mary发布了新的文献求助10
1分钟前
1分钟前
1分钟前
dew发布了新的文献求助10
1分钟前
Vivian发布了新的文献求助10
1分钟前
1分钟前
dew完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965570
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155342
捐赠科研通 3245324
什么是DOI,文献DOI怎么找? 1792823
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176