Battery lifetime prediction across diverse ageing conditions with inter-cell deep learning

老化 电池(电) 健康老龄化 计算机科学 可靠性工程 老年学 医学 工程类 内科学 功率(物理) 量子力学 物理
作者
Han Zhang,Yuqi Li,Shun Zheng,Ziheng Lu,Xiaofan Gui,Wei Xu,Jiang Bian
出处
期刊:Nature Machine Intelligence [Springer Nature]
标识
DOI:10.1038/s42256-024-00972-x
摘要

Abstract Accurately predicting battery lifetime in early cycles holds tremendous value in real-world applications. However, this task poses significant challenges due to diverse factors influencing complex battery capacity degradation, such as cycling protocols, ambient temperatures and electrode materials. Moreover, cycling under specific conditions is both resource-intensive and time-consuming. Existing predictive models, primarily developed and validated within a restricted set of ageing conditions, thus raise doubts regarding their extensive applicability. Here we introduce BatLiNet, a deep learning framework tailored to predict battery lifetime reliably across a variety of ageing conditions. The distinctive design is integrating an inter-cell learning mechanism to predict the lifetime differences between two battery cells. This mechanism, when combined with conventional single-cell learning, enhances the stability of lifetime predictions for a target cell under varied ageing conditions. Our experimental results, derived from a broad spectrum of ageing conditions, demonstrate BatLiNet’s superior accuracy and robustness compared to existing models. BatLiNet also exhibits transferring capabilities across different battery chemistries, benefitting scenarios with limited resources. We expect this study could promote exploration of cross-cell insights and facilitate battery research across comprehensive ageing factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助caas6采纳,获得10
刚刚
HansStone发布了新的文献求助10
刚刚
奋斗寒天完成签到,获得积分10
1秒前
grmqgq发布了新的文献求助10
2秒前
2秒前
jazinWang发布了新的文献求助10
2秒前
小愚完成签到,获得积分10
3秒前
丘比特应助cycy采纳,获得10
3秒前
5秒前
猕猴桃发布了新的文献求助10
5秒前
风中的碧空完成签到,获得积分10
6秒前
小二郎应助wsgdhz采纳,获得10
7秒前
酷波er应助眼睛大寻双采纳,获得10
8秒前
8秒前
航航完成签到,获得积分10
8秒前
Hineni发布了新的文献求助10
10秒前
10秒前
忧郁绝音发布了新的文献求助10
11秒前
阳光的草丛完成签到,获得积分20
12秒前
13秒前
13秒前
14秒前
研友_nqv2WZ完成签到,获得积分10
14秒前
小黑鲨发布了新的文献求助10
14秒前
小高同学发布了新的文献求助10
14秒前
14秒前
14秒前
科目三应助小愚采纳,获得20
15秒前
15秒前
深情安青应助Yhh采纳,获得10
15秒前
情怀应助昆仑山吴某采纳,获得10
16秒前
17秒前
paz发布了新的文献求助10
18秒前
hoho发布了新的文献求助10
18秒前
小奥雄发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助有热心愿意采纳,获得10
19秒前
爱静静应助有热心愿意采纳,获得10
19秒前
奔波儿灞发布了新的文献求助10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351548
求助须知:如何正确求助?哪些是违规求助? 2976932
关于积分的说明 8677486
捐赠科研通 2658043
什么是DOI,文献DOI怎么找? 1455449
科研通“疑难数据库(出版商)”最低求助积分说明 673869
邀请新用户注册赠送积分活动 664362