材料科学
电解质
化学工程
锂(药物)
枝晶(数学)
金属锂
相间
电池(电)
纳米技术
电极
化学
物理化学
医学
内分泌学
功率(物理)
物理
几何学
数学
量子力学
生物
工程类
遗传学
作者
Yang Xu,Zhiqiang Fang,Junyi Yue,Limin Wang,Zaifa Wang,Simeng Zhang,Mengzhu Liu,Zimujun Ye,Ran Liu,Xiaolong Yan,Han Xu,Yueyue Wang,Changtai Zhao,Biwei Xiao,Xianbao Wang,Wei Xiao,Xiaona Li,Tao Mei,Jianwen Liang
出处
期刊:Small
[Wiley]
日期:2024-11-22
标识
DOI:10.1002/smll.202408824
摘要
Abstract Lithium dendrite growth has become a significant barrier to realizing high‐performance all‐solid‐state lithium metal batteries. Herein, an effective approach is presented to address this challenge through interphase engineering by using a cross‐linked polyamide (negative electrostatic potential) that is chemically anchored to the surface of Li 6 PS 5 Cl (positive electrostatic potential). This method improves contact between electrolyte particles and strategically modifies the local electronic structure at the grain boundary. This innovation effectively suppresses lithium dendrite formation and enhances the overall interface stability. As a result, the critical current density of the Li 6 PS 5 Cl sulfide electrolyte is dramatically boosted from 0.4 to 1.6 mA cm −2 , representing a remarkable fourfold improvement. Moreover, Li–Li symmetric batteries demonstrate exceptional stability, enduring over 10,000 h of consistent Li + deposition/stripping at a high areal capacity of 3 mAh cm −2 . Impressively Li–LiNi 0.89 Mn 0.055 Co 0.055 O 2 full cells exhibited outstanding cycle stability and rate performance, maintaining over 80% capacity retention after 750 cycles at a demanding 1C rate. Pouch cells produced using dry‐process electrodes demonstrate strong potential for commercialization. The interphase engineering strategy offers a promising solution to the persistent challenge of dendrite growth, enabling the full realization of sulfide electrolytes' capabilities in next‐generation battery technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI