海底管道
海上风力发电
断层(地质)
故障检测与隔离
海洋工程
计算机科学
算法
工程类
人工智能
地质学
风力发电
电气工程
地震学
岩土工程
执行机构
作者
Zhao Tianxiang,Li Sun,Yilai Zhou,Zhuang Kang,He Li,Jichuan Kang
摘要
ABSTRACT This study presents a novel deep learning‐based approach for fault detection in offshore wind‐hydrogen systems. A fault detection model is developed using convolutional neural networks (CNNs), bidirectional long short‐term memory networks (BiLSTMs), and an attention mechanism (AM). The model is trained on a dataset generated through fault injection techniques, which simulate real‐world faults in the system. Key operational parameters, such as wind speed and hydrogen production rate, are used to detect faults effectively. This paper reduces reliance on actual experiments, and introducing artificial faults allows system performance assessment under different fault scenarios, lowering project risks and costs. This work facilitates automatic feature extraction and high‐precision classification of time‐series fault data, which covers a fully automated learning process from data to fault detection. The outstanding performance of the method is validated through computation and result comparison.
科研通智能强力驱动
Strongly Powered by AbleSci AI