Cross-Dock Trailer Scheduling with Workforce Constraints: A Dynamic Discretization Discovery Approach

拖车 码头 离散化 调度(生产过程) 计算机科学 运筹学 数学优化 作业车间调度 工程类 运输工程 海洋工程 数学 计算机网络 布线(电子设计自动化) 数学分析
作者
Ritesh Ojha,Alan L. Erera
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0406
摘要

Less-than-truckload (LTL) freight carriers operate consolidation networks that utilize cross-docking terminals to facilitate the transfer of freight between trailers and enhance trailer utilization. This research addresses the problem of determining an optimal schedule for unloading inbound trailers at specific unloading doors using teams of dock workers. The optimization objective is chosen to ensure that outbound trailers are loaded with minimal delay with respect to their target loading due dates. Formulating this problem, which is known to be NP-hard, using a typical time-expanded network often results in an excessively large mixed-integer programming (MIP) model. To overcome this challenge, we propose an exact dynamic discretization discovery (DDD) algorithm that iteratively solves MIPs formulated over partial networks. The algorithm employs a combination of a simple time discretization refinement strategy to progressively refine the partial network until a provably optimal solution is obtained. We demonstrate the effectiveness of the algorithm in solving problem instances representative of a large L-shaped cross-dock in Atlanta. The DDD algorithm outperforms solving the model formulated over a complete time-expanded network with a commercial solver in terms of both computational time and solution quality for practical instances with 180 trailers, 44 unloading doors, and 57 loading doors. Additionally, we compare the DDD algorithm with a state-of-the-art interval scheduling approach using instances from a previous study with a different objective function and additional constraints. The DDD algorithm is computationally faster for most of the small and medium instances and achieves competitive bounds for the larger instances. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0406 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究新人发布了新的文献求助10
2秒前
2秒前
自然完成签到,获得积分10
2秒前
小王完成签到 ,获得积分10
2秒前
雪流星完成签到 ,获得积分10
3秒前
panda发布了新的文献求助10
4秒前
5秒前
一点点完成签到 ,获得积分10
6秒前
6秒前
萧水白应助nini采纳,获得10
6秒前
科研通AI2S应助缥缈傥采纳,获得10
7秒前
7秒前
友好的小鸭子完成签到 ,获得积分10
8秒前
8秒前
研究新人完成签到,获得积分10
9秒前
小蘑菇应助wudi19887采纳,获得10
10秒前
陈嘟嘟发布了新的文献求助10
10秒前
思源应助团子采纳,获得10
11秒前
shenglongmax发布了新的文献求助10
11秒前
卡列林发布了新的文献求助10
12秒前
朱华彪发布了新的文献求助10
12秒前
babybluebabe发布了新的文献求助10
13秒前
13秒前
小星云完成签到,获得积分20
13秒前
Kervaff发布了新的文献求助50
15秒前
小姚在忙完成签到,获得积分10
18秒前
SciGPT应助王冠军采纳,获得10
20秒前
小杜完成签到,获得积分10
21秒前
21秒前
24秒前
yar应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
yar应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
张益萌应助科研通管家采纳,获得30
25秒前
25秒前
yar应助科研通管家采纳,获得10
25秒前
CodeCraft应助霸气的梦露采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304346
求助须知:如何正确求助?哪些是违规求助? 2938329
关于积分的说明 8488322
捐赠科研通 2612813
什么是DOI,文献DOI怎么找? 1426885
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374