Cross-Dock Trailer Scheduling with Workforce Constraints: A Dynamic Discretization Discovery Approach

拖车 码头 离散化 调度(生产过程) 计算机科学 运筹学 数学优化 作业车间调度 工程类 运输工程 海洋工程 数学 计算机网络 布线(电子设计自动化) 数学分析
作者
Ritesh Ojha,Alan L. Erera
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0406
摘要

Less-than-truckload (LTL) freight carriers operate consolidation networks that utilize cross-docking terminals to facilitate the transfer of freight between trailers and enhance trailer utilization. This research addresses the problem of determining an optimal schedule for unloading inbound trailers at specific unloading doors using teams of dock workers. The optimization objective is chosen to ensure that outbound trailers are loaded with minimal delay with respect to their target loading due dates. Formulating this problem, which is known to be NP-hard, using a typical time-expanded network often results in an excessively large mixed-integer programming (MIP) model. To overcome this challenge, we propose an exact dynamic discretization discovery (DDD) algorithm that iteratively solves MIPs formulated over partial networks. The algorithm employs a combination of a simple time discretization refinement strategy to progressively refine the partial network until a provably optimal solution is obtained. We demonstrate the effectiveness of the algorithm in solving problem instances representative of a large L-shaped cross-dock in Atlanta. The DDD algorithm outperforms solving the model formulated over a complete time-expanded network with a commercial solver in terms of both computational time and solution quality for practical instances with 180 trailers, 44 unloading doors, and 57 loading doors. Additionally, we compare the DDD algorithm with a state-of-the-art interval scheduling approach using instances from a previous study with a different objective function and additional constraints. The DDD algorithm is computationally faster for most of the small and medium instances and achieves competitive bounds for the larger instances. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0406 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南城花开完成签到 ,获得积分10
刚刚
苹果秋灵完成签到,获得积分10
1秒前
魏骜琦完成签到,获得积分10
1秒前
Jasper应助科研小白采纳,获得10
2秒前
强强强强完成签到,获得积分10
2秒前
zdl发布了新的文献求助10
2秒前
3秒前
自然的曲奇完成签到 ,获得积分10
3秒前
cloudyick完成签到,获得积分10
3秒前
3秒前
七七完成签到,获得积分10
3秒前
太叔白风完成签到,获得积分10
4秒前
321完成签到,获得积分10
4秒前
务实从阳完成签到,获得积分10
4秒前
大模型应助cyy1226采纳,获得10
5秒前
苹果秋灵发布了新的文献求助10
5秒前
6秒前
劉劉发布了新的文献求助30
6秒前
LegendThree完成签到,获得积分10
7秒前
包子牛奶完成签到,获得积分10
7秒前
7秒前
研友_8YVWPL发布了新的文献求助10
8秒前
8秒前
8秒前
飞翔的梦完成签到,获得积分10
8秒前
优秀剑愁完成签到 ,获得积分10
8秒前
WJ发布了新的文献求助10
9秒前
尤珩完成签到,获得积分10
9秒前
椰椰完成签到 ,获得积分10
9秒前
啦啦啦啦啦啦啦完成签到,获得积分10
9秒前
感动傀斗完成签到,获得积分10
10秒前
勤奋酒窝完成签到,获得积分10
10秒前
zhuyimin913完成签到 ,获得积分10
10秒前
西门凡双完成签到,获得积分10
10秒前
10秒前
11秒前
小螃蟹完成签到 ,获得积分10
11秒前
琼仔仔发布了新的文献求助10
12秒前
好运連連完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259