Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks

溃疡性结肠炎 氨基水杨酸 医学 结直肠癌 炎症性肠病 结肠炎 胃肠病学 内科学 卷积神经网络 癌症 固有层 结肠镜检查 病理 人工智能 疾病 计算机科学 上皮
作者
Joaquim Carreras,Giovanna Roncador,Rifat Hamoudi
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:16 (24): 4230-4230
标识
DOI:10.3390/cancers16244230
摘要

Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. Conclusions: CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陈静静发布了新的文献求助10
2秒前
liuxinyu发布了新的文献求助10
2秒前
LHL发布了新的文献求助10
2秒前
3秒前
淡定元珊完成签到,获得积分10
3秒前
4秒前
今后应助雷霆爆爆凯采纳,获得10
4秒前
小蘑菇应助山苍梓采纳,获得10
4秒前
6秒前
qiu完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Owen应助多摩川的烟花少年采纳,获得10
7秒前
12关闭了12文献求助
8秒前
qiucheng1227发布了新的文献求助10
8秒前
科研通AI6应助yayisheng采纳,获得10
8秒前
10秒前
10秒前
李牧发布了新的文献求助10
11秒前
11秒前
64658应助沧海一声笑采纳,获得10
12秒前
12秒前
浮游应助嘟噜采纳,获得10
12秒前
兴奋的若菱完成签到 ,获得积分10
12秒前
13秒前
dxm发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助30
14秒前
15秒前
15秒前
16秒前
林鑫璐发布了新的文献求助10
17秒前
17秒前
英吉利25发布了新的文献求助20
18秒前
叶郅晟发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355