Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks

溃疡性结肠炎 氨基水杨酸 医学 结直肠癌 炎症性肠病 结肠炎 胃肠病学 内科学 卷积神经网络 癌症 固有层 结肠镜检查 病理 人工智能 疾病 计算机科学 上皮
作者
Joaquim Carreras,Giovanna Roncador,Rifat Hamoudi
出处
期刊:Cancers [MDPI AG]
卷期号:16 (24): 4230-4230
标识
DOI:10.3390/cancers16244230
摘要

Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. Conclusions: CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助做实验太菜采纳,获得10
刚刚
huo应助ldj6670采纳,获得10
1秒前
超帅沂发布了新的文献求助10
1秒前
cupid_lu发布了新的文献求助10
2秒前
yar应助leon采纳,获得10
2秒前
3秒前
Behappy完成签到 ,获得积分10
3秒前
淡然伊发布了新的文献求助10
3秒前
徐昊完成签到,获得积分10
4秒前
陈东东完成签到,获得积分10
4秒前
tomorrow505应助勤恳的饭饭采纳,获得10
4秒前
平安顺遂发布了新的文献求助10
5秒前
Vision820发布了新的文献求助10
5秒前
5秒前
6秒前
逆旅如行人完成签到,获得积分10
7秒前
7秒前
7秒前
开朗向真完成签到,获得积分10
8秒前
端庄冬日完成签到,获得积分10
8秒前
8秒前
嘟嘟发布了新的文献求助10
9秒前
瓶子完成签到 ,获得积分10
9秒前
热心的珍完成签到,获得积分10
9秒前
9秒前
whqn发布了新的文献求助100
10秒前
LB1275776408完成签到,获得积分10
10秒前
12秒前
霸气的代天完成签到,获得积分10
12秒前
wuyu发布了新的文献求助10
13秒前
13秒前
yu完成签到,获得积分10
14秒前
李爱国应助展开的黑花球采纳,获得10
14秒前
派大猪咪发布了新的文献求助10
14秒前
阿婷婷婷完成签到 ,获得积分10
15秒前
melon完成签到,获得积分10
15秒前
寻找土豆的灯完成签到 ,获得积分10
16秒前
嗷嗷嗷啊完成签到,获得积分10
16秒前
ppf发布了新的文献求助10
16秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328119
求助须知:如何正确求助?哪些是违规求助? 2958244
关于积分的说明 8589820
捐赠科研通 2636574
什么是DOI,文献DOI怎么找? 1443038
科研通“疑难数据库(出版商)”最低求助积分说明 668500
邀请新用户注册赠送积分活动 655733