Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks

溃疡性结肠炎 氨基水杨酸 医学 结直肠癌 炎症性肠病 结肠炎 胃肠病学 内科学 卷积神经网络 癌症 固有层 结肠镜检查 病理 人工智能 疾病 计算机科学 上皮
作者
Joaquim Carreras,Giovanna Roncador,Rifat Hamoudi
出处
期刊:Cancers [MDPI AG]
卷期号:16 (24): 4230-4230
标识
DOI:10.3390/cancers16244230
摘要

Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. Conclusions: CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程程发布了新的文献求助10
刚刚
张张发布了新的文献求助10
1秒前
CipherSage应助bcxly采纳,获得10
1秒前
郭晓璇发布了新的文献求助10
1秒前
明亮的嚣发布了新的文献求助10
1秒前
2秒前
Irene发布了新的文献求助10
2秒前
大模型应助愉快砖家采纳,获得10
2秒前
3秒前
3秒前
3秒前
微笑采文完成签到,获得积分10
3秒前
11完成签到 ,获得积分10
3秒前
4秒前
dd完成签到,获得积分10
4秒前
4秒前
5秒前
vv完成签到,获得积分10
5秒前
思源应助Lay采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
思源应助张张采纳,获得10
6秒前
6秒前
huihui发布了新的文献求助10
6秒前
6秒前
6秒前
所所应助小景007采纳,获得10
7秒前
Yan发布了新的文献求助10
7秒前
7秒前
8秒前
茶壶发布了新的文献求助10
8秒前
温暖的皮皮虾完成签到,获得积分10
8秒前
Li发布了新的文献求助10
8秒前
帅气的跳跳糖完成签到,获得积分10
8秒前
默默完成签到,获得积分10
9秒前
情怀应助哈哈哈开开心心采纳,获得10
9秒前
曾经如冬完成签到,获得积分10
9秒前
在水一方应助Irene采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434796
求助须知:如何正确求助?哪些是违规求助? 4547135
关于积分的说明 14206191
捐赠科研通 4467229
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439403
关于科研通互助平台的介绍 1416096