Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks

溃疡性结肠炎 氨基水杨酸 医学 结直肠癌 炎症性肠病 结肠炎 胃肠病学 内科学 卷积神经网络 癌症 固有层 结肠镜检查 病理 人工智能 疾病 计算机科学 上皮
作者
Joaquim Carreras,Giovanna Roncador,Rifat Hamoudi
出处
期刊:Cancers [MDPI AG]
卷期号:16 (24): 4230-4230
标识
DOI:10.3390/cancers16244230
摘要

Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. Conclusions: CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨lan完成签到 ,获得积分10
1秒前
1秒前
hhy完成签到,获得积分10
2秒前
paopao完成签到,获得积分10
2秒前
3秒前
4秒前
欣慰冬亦发布了新的文献求助10
4秒前
文文发布了新的文献求助10
4秒前
王滕发布了新的文献求助10
5秒前
小小完成签到,获得积分10
6秒前
13940519973发布了新的文献求助30
6秒前
丸子博士发布了新的文献求助10
8秒前
夏姬宁静发布了新的文献求助10
8秒前
522完成签到,获得积分10
9秒前
9秒前
浮游应助爱咋咋地采纳,获得10
9秒前
球状闪电完成签到,获得积分10
9秒前
FashionBoy应助单薄的钢笔采纳,获得10
9秒前
joey106发布了新的文献求助10
10秒前
LTT完成签到,获得积分20
11秒前
烟花应助王滕采纳,获得10
12秒前
14秒前
mf发布了新的文献求助10
15秒前
Mei发布了新的文献求助10
15秒前
latata完成签到,获得积分10
16秒前
赘婿应助dudulu采纳,获得10
17秒前
妖魔鬼怪快离开完成签到,获得积分10
17秒前
mf完成签到 ,获得积分10
18秒前
虚幻远侵发布了新的文献求助10
20秒前
浮游应助王滕采纳,获得10
20秒前
jiangzhi发布了新的文献求助30
20秒前
欣慰冬亦完成签到,获得积分10
20秒前
21秒前
阿猫完成签到,获得积分10
21秒前
汉堡包应助LTT采纳,获得10
22秒前
小宅女完成签到 ,获得积分10
22秒前
天天快乐应助joey106采纳,获得10
24秒前
蔡继海发布了新的文献求助10
24秒前
z7777777完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329