Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks

溃疡性结肠炎 氨基水杨酸 医学 结直肠癌 炎症性肠病 结肠炎 胃肠病学 内科学 卷积神经网络 癌症 固有层 结肠镜检查 病理 人工智能 疾病 计算机科学 上皮
作者
Joaquim Carreras,Giovanna Roncador,Rifat Hamoudi
出处
期刊:Cancers [MDPI AG]
卷期号:16 (24): 4230-4230
标识
DOI:10.3390/cancers16244230
摘要

Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. Conclusions: CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到 ,获得积分10
2秒前
临兵者完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
柴yuki完成签到 ,获得积分10
10秒前
桃子完成签到 ,获得积分10
13秒前
15秒前
Ttimer发布了新的文献求助30
21秒前
吃的饱饱呀完成签到 ,获得积分10
23秒前
34秒前
量子星尘发布了新的文献求助10
40秒前
坚强志泽完成签到 ,获得积分10
40秒前
龙猫爱看书完成签到,获得积分10
48秒前
52秒前
54秒前
55秒前
58秒前
小帮手发布了新的文献求助10
1分钟前
席康发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
四月发布了新的文献求助10
1分钟前
Johan完成签到 ,获得积分10
1分钟前
姜丝罐罐n完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
Sean完成签到 ,获得积分10
1分钟前
炙热的夜雪完成签到 ,获得积分10
1分钟前
1分钟前
淡然完成签到 ,获得积分10
1分钟前
席康完成签到 ,获得积分10
1分钟前
马东完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lily发布了新的文献求助10
1分钟前
lql完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789212
求助须知:如何正确求助?哪些是违规求助? 5717008
关于积分的说明 15474363
捐赠科研通 4917123
什么是DOI,文献DOI怎么找? 2646783
邀请新用户注册赠送积分活动 1594446
关于科研通互助平台的介绍 1548914