Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks

溃疡性结肠炎 氨基水杨酸 医学 结直肠癌 炎症性肠病 结肠炎 胃肠病学 内科学 卷积神经网络 癌症 固有层 结肠镜检查 病理 人工智能 疾病 计算机科学 上皮
作者
Joaquim Carreras,Giovanna Roncador,Rifat Hamoudi
出处
期刊:Cancers [MDPI AG]
卷期号:16 (24): 4230-4230
标识
DOI:10.3390/cancers16244230
摘要

Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. Conclusions: CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shawn发布了新的文献求助10
1秒前
ty发布了新的文献求助10
1秒前
1秒前
1秒前
感谢大家完成签到,获得积分10
2秒前
3秒前
5秒前
LT发布了新的文献求助10
5秒前
baoxiaozhai完成签到 ,获得积分10
5秒前
baoxiaozhai完成签到 ,获得积分10
5秒前
baoxiaozhai完成签到 ,获得积分10
5秒前
零城XL完成签到 ,获得积分10
6秒前
WC发布了新的文献求助10
6秒前
hoshi发布了新的文献求助10
8秒前
8秒前
9秒前
爱小妍发布了新的文献求助10
9秒前
proverby完成签到,获得积分10
10秒前
10秒前
ww完成签到,获得积分20
10秒前
LT完成签到,获得积分20
10秒前
学习怪完成签到,获得积分10
11秒前
12秒前
orixero应助naych采纳,获得10
12秒前
云泽应助高兴断秋采纳,获得10
12秒前
yuki发布了新的文献求助10
12秒前
zzzzz发布了新的文献求助10
12秒前
我超爱cs完成签到,获得积分10
13秒前
13秒前
14秒前
Robby完成签到 ,获得积分10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352677
求助须知:如何正确求助?哪些是违规求助? 4485481
关于积分的说明 13963212
捐赠科研通 4385463
什么是DOI,文献DOI怎么找? 2409427
邀请新用户注册赠送积分活动 1401828
关于科研通互助平台的介绍 1375439