清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks

溃疡性结肠炎 氨基水杨酸 医学 结直肠癌 炎症性肠病 结肠炎 胃肠病学 内科学 卷积神经网络 癌症 固有层 结肠镜检查 病理 人工智能 疾病 计算机科学 上皮
作者
Joaquim Carreras,Giovanna Roncador,Rifat Hamoudi
出处
期刊:Cancers [MDPI AG]
卷期号:16 (24): 4230-4230
标识
DOI:10.3390/cancers16244230
摘要

Background: Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. Objective: This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). Methods: A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. Results: Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. Conclusions: CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHEN完成签到 ,获得积分10
13秒前
19秒前
量子星尘发布了新的文献求助10
29秒前
冠状动脉完成签到,获得积分10
34秒前
懒得起名字完成签到 ,获得积分10
39秒前
46秒前
852应助Omni采纳,获得10
55秒前
爆米花应助科研通管家采纳,获得10
1分钟前
芹123完成签到,获得积分10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
1分钟前
guoxihan完成签到,获得积分10
1分钟前
清澈的爱只为中国完成签到 ,获得积分10
2分钟前
NSJN2022发布了新的文献求助10
2分钟前
共享精神应助NSJN2022采纳,获得10
2分钟前
一天完成签到 ,获得积分10
2分钟前
Thunnus001完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
qiandi完成签到 ,获得积分10
2分钟前
苏苏苏发布了新的文献求助10
2分钟前
冠状动脉发布了新的文献求助10
3分钟前
creep2020完成签到,获得积分10
3分钟前
简奥斯汀完成签到 ,获得积分10
3分钟前
苏苏苏发布了新的文献求助10
3分钟前
喜悦的唇彩完成签到,获得积分10
3分钟前
4分钟前
4分钟前
欧哈纳完成签到 ,获得积分10
4分钟前
ShishanXue完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Omni发布了新的文献求助10
4分钟前
5分钟前
碗碗豆喵完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
NSJN2022完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450245
求助须知:如何正确求助?哪些是违规求助? 4558077
关于积分的说明 14265402
捐赠科研通 4481483
什么是DOI,文献DOI怎么找? 2454891
邀请新用户注册赠送积分活动 1445638
关于科研通互助平台的介绍 1421614