动作(物理)
动力学(音乐)
计算机科学
计算生物学
化学
数据科学
心理学
生物
物理
教育学
量子力学
作者
Jokent T. Gaza,Emiliano Brini,Justin L. MacCallum,Ken A. Dill,Alberto Pérez
标识
DOI:10.1021/acs.jcim.4c02108
摘要
We review MELD, an accelerator of Molecular Dynamics simulations of biomolecules. MELD (Modeling Employing Limited Data) integrates molecular dynamics (MD) with a variety of types of structural information through Bayesian inference, generating ensembles of protein and DNA structures having proper Boltzmann populations. MELD minimizes the computational sampling of irrelevant regions of phase space by applying energetic penalties to areas that conflict with the available data. MELD is effective in refining protein structures using NMR or cryo-EM data or predicting protein–ligand binding poses. As a plugin for OpenMM, MELD is interoperable with other enhanced sampling methods, offering a versatile tool for structural determination in computational chemistry and biophysics.
科研通智能强力驱动
Strongly Powered by AbleSci AI