National Use of Artificial Intelligence for Eye Screening in Singapore

人工智能 验光服务 计算机科学 数据科学 医学
作者
Dinesh Visva Gunasekeran,Steven Miller,Wynne Hsu,Mong Li Lee,Hon Tym Wong,M. Lee,Ecosse L. Lamoureux,Daniel Shu Wei Ting,Gavin Siew Wei Tan,Tien Yin Wong
标识
DOI:10.1056/aics2400404
摘要

Diabetes is a major health care challenge, affecting 10% of the global population. One third of patients with diabetes have an ocular complication known as diabetic retinopathy (DR). DR progression to manifestations such as vision-threatening diabetic retinopathy (VTDR) remains the leading cause of blindness in working-aged adults. Yearly DR screening is a universally recommended practice in primary care settings for patients with diabetes, but it is often difficult to implement due to a lack of staffing and screening capacity in primary care. This case study highlights our experience with developing a medical artificial intelligence (AI) software-as-a-medical-device (SaMD) solution for DR screening and implementing it at a national level to provide the capacity needed for DR screening in Singapore. Our approach involved two broad phases. First, we established a national telemedicine screening program, Singapore Integrated Diabetic Retinopathy Program (SiDRP), for population screening of DR in primary care run by trained, nonclinician human graders. Second, we deployed a deep learning–based AI solution, Singapore Eye Lesion Analyzer (SELENA+), into the SiDRP to scale-up the DR screening process by the human graders. We demonstrated the cost-effectiveness of this solution, and obtained medical device regulatory approval for clinical use in health care settings. We report the prospective evaluation of SELENA+ in SiDRP using real-world pilot data from the first 1712 patients consecutively recruited. Sensitivity and specificity of SELENA+ in detection of referable DR cases were 94.7% (95% confidence interval [CI] 88.0% to 98.3%) and 82.2% (95% CI 80.8% to 83.5%), respectively. In comparison, sensitivity and specificity of human graders were 98.9% (95% CI 94.0% to 99.9%) and 97.2% (95% CI 96.6–97.8%), respectively. For patients with VTDR, SELENA+ demonstrated a substantial advantage of higher sensitivity compared with human performance, reflecting the benefit of the fine-tuning of SELENA+ that we performed to enhance the AI solution's ability to detect VTDR. We outline the clinical, technical, operational, regulatory, and governance challenges encountered as well as the lessons learnt in this AI algorithm implementation journey. We also present a conceptual framework with considerations and strategies for the broader adoption of medical AI SaMD solutions in the field of ophthalmology and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助平淡的树叶采纳,获得30
1秒前
VDC应助sun采纳,获得30
2秒前
海洋完成签到,获得积分10
3秒前
8R60d8应助荔枝采纳,获得10
3秒前
哈哈完成签到,获得积分10
3秒前
小丫发布了新的文献求助10
5秒前
6秒前
三石盟约完成签到,获得积分10
7秒前
科研通AI2S应助不爱吃鳗鱼采纳,获得10
7秒前
7秒前
碧蓝的念瑶完成签到,获得积分20
9秒前
Bei不歌完成签到,获得积分10
9秒前
小杨发布了新的文献求助10
9秒前
123456发布了新的文献求助10
9秒前
9秒前
多情老三完成签到,获得积分10
10秒前
Rita应助木杉采纳,获得10
11秒前
WZJ发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
Xiaoyuan发布了新的文献求助30
14秒前
领导范儿应助jikou888采纳,获得10
15秒前
15秒前
Zz完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
十一完成签到,获得积分10
17秒前
甜甜语薇发布了新的文献求助10
17秒前
伊橙发布了新的文献求助30
18秒前
司空蓝完成签到,获得积分10
19秒前
19秒前
英姑应助dery采纳,获得10
20秒前
王电催化发布了新的文献求助10
21秒前
rcrc111完成签到 ,获得积分10
21秒前
李穆迪发布了新的文献求助10
21秒前
22秒前
司空蓝发布了新的文献求助10
22秒前
可爱的函函应助123456采纳,获得20
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240186
求助须知:如何正确求助?哪些是违规求助? 2885221
关于积分的说明 8237360
捐赠科研通 2553498
什么是DOI,文献DOI怎么找? 1381664
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 625009