人工神经网络
特征(语言学)
计算机科学
系列(地层学)
循环神经网络
人工智能
时间序列
特征工程
区间(图论)
机器学习
点(几何)
数据挖掘
深度学习
数学
地质学
哲学
组合数学
古生物学
语言学
几何学
出处
期刊:Cornell University - arXiv
日期:2019-01-01
被引量:80
标识
DOI:10.48550/arxiv.1901.00069
摘要
Time series forecasting is difficult. It is difficult even for recurrent neural networks with their inherent ability to learn sequentiality. This article presents a recurrent neural network based time series forecasting framework covering feature engineering, feature importances, point and interval predictions, and forecast evaluation. The description of the method is followed by an empirical study using both LSTM and GRU networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI