人工智能
阿达布思
支持向量机
接收机工作特性
梯度升压
随机森林
分类器(UML)
机器学习
数学
计算机科学
上颌骨
模式识别(心理学)
口腔正畸科
医学
作者
Cristiano Miranda de Araújo,Pedro Felipe de Jesus Freitas,Aline Xavier Ferraz,Patrícia Kern Di Scala Andreis,Michelle Nascimento Meger,Flares Baratto‐Filho,César Augusto Rodenbusch Poletto,Érika Calvano Küchler,Elisa Souza Camargo,Ângela Graciela Deliga Schröder
摘要
ABSTRACT Objectives To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques. Materials and Methods The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K‐Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5‐fold cross‐validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed. Results The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74–0.98] for test data to 0.89 [CI95% = 0.86–0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms. Conclusion The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI