Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning

人工智能 阿达布思 支持向量机 接收机工作特性 梯度升压 随机森林 分类器(UML) 机器学习 数学 计算机科学 上颌骨 模式识别(心理学) 口腔正畸科 医学
作者
Cristiano Miranda de Araújo,Pedro Felipe de Jesus Freitas,Aline Xavier Ferraz,Patrícia Kern Di Scala Andreis,Michelle Nascimento Meger,Flares Baratto‐Filho,César Augusto Rodenbusch Poletto,Érika Calvano Küchler,Elisa Souza Camargo,Ângela Graciela Deliga Schröder
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
标识
DOI:10.1111/ocr.12863
摘要

ABSTRACT Objectives To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques. Materials and Methods The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K‐Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5‐fold cross‐validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed. Results The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74–0.98] for test data to 0.89 [CI95% = 0.86–0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms. Conclusion The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助HJJHJH采纳,获得10
1秒前
wxy发布了新的文献求助10
4秒前
4秒前
上官若男应助清脆的夜白采纳,获得10
6秒前
6秒前
香仔啊发布了新的文献求助10
6秒前
大个应助新宇星辰采纳,获得10
7秒前
科研通AI6应助悠夏sunny采纳,获得10
7秒前
nie完成签到,获得积分20
7秒前
失眠听南完成签到,获得积分10
7秒前
李会计和完成签到,获得积分10
8秒前
8秒前
寒冷南晴完成签到,获得积分10
9秒前
9秒前
ding应助结实半邪采纳,获得30
9秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得100
11秒前
852应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
老田发布了新的文献求助80
12秒前
JamesPei应助丰富伊采纳,获得10
13秒前
13秒前
贪玩大侠完成签到,获得积分10
13秒前
14秒前
李会计和发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355483
求助须知:如何正确求助?哪些是违规求助? 4487366
关于积分的说明 13969755
捐赠科研通 4387995
什么是DOI,文献DOI怎么找? 2410805
邀请新用户注册赠送积分活动 1403340
关于科研通互助平台的介绍 1376902