Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning

人工智能 阿达布思 支持向量机 接收机工作特性 梯度升压 随机森林 分类器(UML) 机器学习 数学 计算机科学 上颌骨 模式识别(心理学) 口腔正畸科 医学
作者
Cristiano Miranda de Araújo,Pedro Felipe de Jesus Freitas,Aline Xavier Ferraz,Patrícia Kern Di Scala Andreis,Michelle Nascimento Meger,Flares Baratto‐Filho,César Augusto Rodenbusch Poletto,Érika Calvano Küchler,Elisa Souza Camargo,Ângela Graciela Deliga Schröder
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
标识
DOI:10.1111/ocr.12863
摘要

ABSTRACT Objectives To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques. Materials and Methods The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K‐Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5‐fold cross‐validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed. Results The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74–0.98] for test data to 0.89 [CI95% = 0.86–0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms. Conclusion The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无尘发布了新的文献求助10
刚刚
1秒前
田様应助sylus采纳,获得10
2秒前
xr123456发布了新的文献求助10
2秒前
思絮完成签到 ,获得积分10
4秒前
自由冬亦完成签到,获得积分10
4秒前
嘿嘿发布了新的文献求助10
5秒前
安静的鸽子完成签到,获得积分10
6秒前
疯狂的曲奇完成签到,获得积分10
7秒前
7秒前
PhD_HanWu完成签到,获得积分10
8秒前
12秒前
薛而不思则罔完成签到 ,获得积分10
12秒前
等待从阳发布了新的文献求助30
12秒前
弹剑作歌完成签到,获得积分10
15秒前
17秒前
英姑应助Dr.c采纳,获得10
17秒前
慕青应助水中捞月采纳,获得10
18秒前
小琪发布了新的文献求助10
18秒前
yyanxuemin919发布了新的文献求助10
19秒前
22秒前
fy2001发布了新的文献求助30
24秒前
hhh555完成签到,获得积分10
24秒前
25秒前
小马甲应助zkeeee采纳,获得10
25秒前
酷炫灰狼发布了新的文献求助10
26秒前
xr123456完成签到,获得积分10
27秒前
范fan发布了新的文献求助10
27秒前
28秒前
沉默红牛完成签到,获得积分20
29秒前
30秒前
31秒前
沉默红牛发布了新的文献求助10
31秒前
Akim应助嘿嘿采纳,获得10
32秒前
wang发布了新的文献求助80
32秒前
32秒前
科研小白发布了新的文献求助10
33秒前
33秒前
liuyu0209发布了新的文献求助10
34秒前
Dr.c发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432