Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning

人工智能 阿达布思 支持向量机 接收机工作特性 梯度升压 随机森林 分类器(UML) 机器学习 数学 计算机科学 上颌骨 模式识别(心理学) 口腔正畸科 医学
作者
Cristiano Miranda de Araújo,Pedro Felipe de Jesus Freitas,Aline Xavier Ferraz,Patrícia Kern Di Scala Andreis,Michelle Nascimento Meger,Flares Baratto‐Filho,César Augusto Rodenbusch Poletto,Érika Calvano Küchler,Elisa Souza Camargo,Ângela Graciela Deliga Schröder
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
标识
DOI:10.1111/ocr.12863
摘要

ABSTRACT Objectives To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques. Materials and Methods The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K‐Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5‐fold cross‐validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed. Results The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74–0.98] for test data to 0.89 [CI95% = 0.86–0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms. Conclusion The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助绿油油采纳,获得30
1秒前
顾矜应助露露采纳,获得10
1秒前
1秒前
优秀的大米完成签到,获得积分20
2秒前
鹿多多完成签到 ,获得积分10
5秒前
5秒前
啊啊啊啊发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Yexidong发布了新的文献求助10
6秒前
坚强幼荷发布了新的文献求助10
9秒前
10秒前
黑土发布了新的文献求助20
11秒前
Jackson发布了新的文献求助10
11秒前
11秒前
啊啊啊啊完成签到,获得积分10
12秒前
14秒前
甜崽发布了新的文献求助10
14秒前
15秒前
16秒前
链集完成签到,获得积分20
17秒前
科研通AI5应助yuaasusanaann采纳,获得10
17秒前
17秒前
JamesPei应助Doo_lu采纳,获得10
20秒前
20秒前
23秒前
酷酷幻枫发布了新的文献求助20
23秒前
wu发布了新的文献求助10
24秒前
赘婿应助鬼火采纳,获得10
24秒前
24秒前
26秒前
afsdfds完成签到,获得积分10
27秒前
28秒前
魂逝之完成签到,获得积分10
28秒前
28秒前
安笙完成签到 ,获得积分10
29秒前
天天快乐应助链集采纳,获得20
29秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234