Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning

人工智能 阿达布思 支持向量机 接收机工作特性 梯度升压 随机森林 分类器(UML) 机器学习 数学 计算机科学 上颌骨 模式识别(心理学) 口腔正畸科 医学
作者
Cristiano Miranda de Araújo,Pedro Felipe de Jesus Freitas,Aline Xavier Ferraz,Patrícia Kern Di Scala Andreis,Michelle Nascimento Meger,Flares Baratto‐Filho,César Augusto Rodenbusch Poletto,Érika Calvano Küchler,Elisa Souza Camargo,Ângela Graciela Deliga Schröder
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
标识
DOI:10.1111/ocr.12863
摘要

ABSTRACT Objectives To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques. Materials and Methods The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K‐Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5‐fold cross‐validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed. Results The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74–0.98] for test data to 0.89 [CI95% = 0.86–0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms. Conclusion The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bella发布了新的文献求助10
刚刚
希望天下0贩的0应助小星采纳,获得10
3秒前
由哎完成签到,获得积分10
3秒前
甜美的秋尽完成签到,获得积分10
4秒前
无花果应助照月采纳,获得10
5秒前
晓晓完成签到,获得积分10
5秒前
科研通AI6应助无魇采纳,获得10
5秒前
mao完成签到,获得积分20
6秒前
6秒前
东阳完成签到,获得积分10
6秒前
隐形萃完成签到 ,获得积分10
6秒前
Owen应助kunnao采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
冯冯完成签到,获得积分10
8秒前
于林强关注了科研通微信公众号
8秒前
Schwann翠星石完成签到,获得积分10
8秒前
Jupiter 1234完成签到,获得积分10
8秒前
nancylan发布了新的文献求助10
8秒前
忧虑的静竹完成签到 ,获得积分20
9秒前
可爱的函函应助一二三采纳,获得10
9秒前
东阳发布了新的文献求助10
9秒前
CGW完成签到,获得积分10
9秒前
9秒前
hhhhhhw完成签到,获得积分20
10秒前
周小台完成签到 ,获得积分10
10秒前
释然zc完成签到,获得积分10
10秒前
11秒前
qq完成签到 ,获得积分10
11秒前
yilin完成签到,获得积分10
11秒前
11秒前
12秒前
花花不花完成签到 ,获得积分10
12秒前
12秒前
13秒前
deng完成签到 ,获得积分10
13秒前
阿正嗖啪完成签到,获得积分10
13秒前
Lucas应助weinaonao采纳,获得10
13秒前
tlrelax完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328