Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning

人工智能 阿达布思 支持向量机 接收机工作特性 梯度升压 随机森林 分类器(UML) 机器学习 数学 计算机科学 上颌骨 模式识别(心理学) 口腔正畸科 医学
作者
Cristiano Miranda de Araújo,Pedro Felipe de Jesus Freitas,Aline Xavier Ferraz,Patrícia Kern Di Scala Andreis,Michelle Nascimento Meger,Flares Baratto‐Filho,César Augusto Rodenbusch Poletto,Érika Calvano Küchler,Elisa Souza Camargo,Ângela Graciela Deliga Schröder
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
标识
DOI:10.1111/ocr.12863
摘要

ABSTRACT Objectives To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques. Materials and Methods The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms: Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K‐Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5‐fold cross‐validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed. Results The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74–0.98] for test data to 0.89 [CI95% = 0.86–0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms. Conclusion The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
智海瑞完成签到,获得积分10
刚刚
1秒前
1秒前
丘比特应助kenhahahaha采纳,获得10
1秒前
1秒前
2秒前
爬不起来发布了新的文献求助10
2秒前
2秒前
coco发布了新的文献求助10
3秒前
凶狠的傲晴完成签到,获得积分10
3秒前
会发光的小叶子完成签到,获得积分10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
浮游应助rxh采纳,获得10
4秒前
陈冰应助文件撤销了驳回
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
霸气南珍应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
夢詮完成签到 ,获得积分10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
柔弱翎应助科研通管家采纳,获得10
6秒前
孙永坤完成签到,获得积分10
6秒前
zhu发布了新的文献求助10
6秒前
6秒前
6秒前
yellow发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005236
求助须知:如何正确求助?哪些是违规求助? 4248931
关于积分的说明 13239041
捐赠科研通 4048486
什么是DOI,文献DOI怎么找? 2214899
邀请新用户注册赠送积分活动 1224821
关于科研通互助平台的介绍 1145241