Employing deep reinforcement learning to maximize lower limb blood flow using intermittent pneumatic compression

计算机科学 强化学习 压缩(物理) 血流 人工智能 医学 材料科学 心脏病学 复合材料
作者
Iara Santelices,Cederick LandryMember,Arash AramiMember,Sean D. Peterson
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3423698
摘要

Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated and standing sub7 jects. However, these pilot studies found that the CT that maximized BV was not constant across individuals and could change over time. Current CT modelling methods for IPC are limited to predictions for a single day and one heartbeat ahead. However, IPC therapy for may span weeks or longer, the BV response to compression can vary with physiological state, and the best CT for eliciting the desired physiological outcome may change, even for the same individual. We propose that a deep reinforcement learning (DRL) algorithm can learn and adaptively modify CT to achieve a selected outcome using IPC. Herein, we target maximizing lower limb arterial BV as the desired out19 come and build participant-specific simulated lower limb environments for 6 participants. We show that DRL can adaptively learn the CT for IPC that maximized arterial BV. Compared to previous work, the DRL agent achieves 98% ± 2 of the resultant blood flow and is faster at maximizing BV; the DRL agent can learn an "optimal" policy in 15 minutes ± 2 on average and can adapt on the fly. Given a desired objective, we posit that the proposed DRL agent can be implemented in IPC systems to rapidly learn the (potentially time-varying) "optimal" CT with a human-in-the-loop.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助Lwxbb采纳,获得10
刚刚
不戴眼镜的眼镜王蛇完成签到,获得积分10
刚刚
小小杜完成签到,获得积分10
刚刚
初心完成签到,获得积分20
刚刚
丽丽完成签到 ,获得积分10
刚刚
学术蟑螂发布了新的文献求助10
刚刚
文艺的竺完成签到,获得积分10
1秒前
小林太郎应助斯奈克采纳,获得20
1秒前
1秒前
情怀应助执笔曦倾年采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研民工完成签到,获得积分10
2秒前
FR完成签到,获得积分10
2秒前
3秒前
小马甲应助浩浩大人采纳,获得10
3秒前
3秒前
小小杜发布了新的文献求助20
3秒前
打打应助袁国惠采纳,获得10
3秒前
3秒前
哈哈哈完成签到,获得积分10
4秒前
小张发布了新的文献求助10
4秒前
温柔若完成签到,获得积分10
4秒前
称心的问薇完成签到,获得积分10
5秒前
5秒前
高兴的半凡完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
Answer完成签到,获得积分10
6秒前
诚心凝旋发布了新的文献求助10
6秒前
孟柠柠完成签到,获得积分10
7秒前
7秒前
哈哈哈发布了新的文献求助10
7秒前
SYLH应助di采纳,获得10
8秒前
韭菜盒子完成签到,获得积分20
8秒前
8秒前
9秒前
饭小心发布了新的文献求助10
9秒前
tanjianxin完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740