Applications of Machine Learning in Real-Time Control Systems: A Review

计算机科学 控制(管理) 人工智能
作者
Xiaoning Zhao,Yougang Sun,Y.Y. Li,Ning Jia,Junqi Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 012003-012003 被引量:3
标识
DOI:10.1088/1361-6501/ad8947
摘要

Abstract Real-time control systems (RTCSs) have become an indispensable part of modern industry, finding widespread applications in fields such as robotics, intelligent manufacturing and transportation. However, these systems face significant challenges, including complex nonlinear dynamics, uncertainties and various constraints. These challenges result in weakened disturbance rejection and reduced adaptability, which make it difficult to meet increasingly stringent performance requirements. In fact, RTCSs generate a large amount of data, which presents an important opportunity to enhance control effectiveness. Machine learning, with its efficiency in extracting valuable information from big data, holds significant potential for applications in RTCSs. Exploring the applications of machine learning in RTCSs is of great importance for guiding scientific research and industrial production. This paper first analyzes the challenges currently faced by RTCSs, elucidating the motivation for integrating machine learning into these systems. Subsequently, it discusses the applications of machine learning in RTCSs from various aspects, including system identification, controller design and optimization, fault diagnosis and tolerance, and perception. The research indicates that data-driven machine learning methods exhibit significant advantages in addressing the multivariable coupling characteristics of complex nonlinear systems, as well as the uncertainties arising from environmental disturbances and faults, thereby effectively enhancing the system’s flexibility and robustness. However, compared to traditional methods, the applications of machine learning also faces issues such as poor model interpretability, high computational requirements leading to insufficient real-time performance, and a strong dependency on high-quality data. This paper discusses these challenges and proposes potential future research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫非常完成签到,获得积分10
刚刚
huohuo143完成签到,获得积分10
刚刚
1秒前
爽o完成签到 ,获得积分10
1秒前
2秒前
大大泡泡完成签到,获得积分10
2秒前
烟雨发布了新的文献求助10
2秒前
柚子成精发布了新的文献求助10
2秒前
心落失完成签到,获得积分10
3秒前
调皮冰旋发布了新的文献求助10
3秒前
zoe完成签到,获得积分10
4秒前
在水一方应助超级芷文采纳,获得10
4秒前
毛慢慢发布了新的文献求助10
4秒前
华仔应助欢喜醉香采纳,获得10
5秒前
Yiling完成签到,获得积分10
5秒前
daker发布了新的文献求助10
6秒前
大兵哥发布了新的文献求助10
6秒前
悦耳易完成签到,获得积分10
6秒前
yao完成签到,获得积分10
6秒前
CCL应助真实的惜灵采纳,获得50
7秒前
踏实的松思完成签到,获得积分10
8秒前
全力以赴先生完成签到,获得积分10
8秒前
wuludie应助dr1nk采纳,获得10
8秒前
香蕉觅云应助一条蛆采纳,获得10
9秒前
MoO完成签到,获得积分10
10秒前
奶黄包完成签到,获得积分10
10秒前
山海任平生发布了新的文献求助200
10秒前
11秒前
enjoy完成签到 ,获得积分10
11秒前
12秒前
思源应助Ico采纳,获得10
12秒前
怡然远望完成签到 ,获得积分10
13秒前
13秒前
木缘发布了新的文献求助10
13秒前
科目三应助奶黄包采纳,获得10
14秒前
不安饼干完成签到 ,获得积分10
14秒前
自由飞阳完成签到,获得积分10
15秒前
15秒前
Young完成签到,获得积分10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516785
求助须知:如何正确求助?哪些是违规求助? 3098996
关于积分的说明 9242585
捐赠科研通 2794278
什么是DOI,文献DOI怎么找? 1533379
邀请新用户注册赠送积分活动 712721
科研通“疑难数据库(出版商)”最低求助积分说明 707431