This paper presents an investigation into the effect of laser-assisted turning of the IN625 superalloy using uncoated and CrAlSiN nanocomposite-coated tungsten carbide tools. A hot hardness test was conducted for IN625 material, which showed there was a pronounced softening of the material above 850 °C. This exercise guided the choice of laser power for the subsequent laser-assisted turning experiments. The cutting forces (radial/thrust, F x ; axial/feed, F y ; and tangential/cutting, F z ), maximum flank wear (VB Bmax ), and surface roughness ( R a ) were measured and analyzed for the planned experiments. The results demonstrated that at 2500 W laser power, a 9%, 70%, and 59% reduction of cutting forces for uncoated tools, and a 31%, 77%, and 69% reduction for CrAlSiN coated tools were observed in the F x , F y , and F z directions respectively. At 2250 W laser power, the uncoated tools exhibited a 33% (433–289 µm) reduction in VB Bmax and a 28% (1.8–1.3 µm) reduction in Ra. The CrAlSiN-coated tools, at 2500 W laser power, showed even more significant improvements, with reductions of 46% (365–232 µm) in VB Bmax and 56% (1.4–0.8 µm) in R a . The results underline the improved performance of laser-assisted turning for cutting-force and tool-wear reduction and improved surface finish with CrAlSiN-coated tools. This paper presents the potential of laser-assisted machining as a viable method for machining difficult-to-machine materials like IN625, which offers enormous manufacturing productivity and tool life benefits.