FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翁雁丝完成签到 ,获得积分10
5秒前
郭义敏完成签到,获得积分0
5秒前
gyf完成签到,获得积分10
8秒前
李保龙完成签到 ,获得积分10
9秒前
13秒前
LJJ完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
17秒前
阿姨洗铁路完成签到 ,获得积分10
22秒前
抹不掉的记忆完成签到,获得积分10
24秒前
24秒前
余杭村王小虎完成签到,获得积分10
25秒前
韭黄完成签到,获得积分20
29秒前
jeffrey完成签到,获得积分10
29秒前
Rondab应助机灵枕头采纳,获得10
35秒前
佳无夜完成签到,获得积分10
40秒前
摆哥完成签到,获得积分10
44秒前
66完成签到,获得积分10
49秒前
zlqq完成签到 ,获得积分10
49秒前
Hardskills发布了新的文献求助10
52秒前
53秒前
之_ZH完成签到 ,获得积分10
1分钟前
gds2021完成签到 ,获得积分10
1分钟前
你好呀嘻嘻完成签到 ,获得积分10
1分钟前
梅特卡夫完成签到,获得积分10
1分钟前
熊雅完成签到,获得积分10
1分钟前
1分钟前
睡到自然醒完成签到 ,获得积分10
1分钟前
cis2014完成签到,获得积分10
1分钟前
独特的大有完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xingyi完成签到,获得积分10
1分钟前
1分钟前
舒心的秋荷完成签到 ,获得积分10
1分钟前
zz123发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
粗犷的灵松完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
ncuwzq完成签到,获得积分10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022