FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LSY完成签到 ,获得积分10
1秒前
愉快涵菱发布了新的文献求助10
2秒前
小猪坨完成签到,获得积分10
3秒前
echo完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
Eon完成签到 ,获得积分10
7秒前
7秒前
8秒前
默默无闻完成签到,获得积分0
9秒前
10秒前
小单王完成签到,获得积分10
10秒前
Yurrrrt完成签到,获得积分10
10秒前
CMD完成签到 ,获得积分10
12秒前
psybrain9527完成签到,获得积分10
14秒前
111完成签到,获得积分10
16秒前
Devil完成签到 ,获得积分10
17秒前
20秒前
20秒前
21秒前
21秒前
26秒前
大得德发布了新的文献求助10
26秒前
callmecjh完成签到,获得积分10
26秒前
问题多多完成签到 ,获得积分10
26秒前
无语的从云完成签到,获得积分10
28秒前
ssk完成签到,获得积分10
30秒前
31秒前
31秒前
nature完成签到,获得积分10
32秒前
35秒前
小米椒完成签到 ,获得积分10
35秒前
36秒前
浮游应助shuicaoxi采纳,获得10
37秒前
浮游应助shuicaoxi采纳,获得10
37秒前
糖丸完成签到,获得积分10
38秒前
OSASACB完成签到 ,获得积分10
38秒前
霸气的代天完成签到,获得积分10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304495
求助须知:如何正确求助?哪些是违规求助? 4450995
关于积分的说明 13850260
捐赠科研通 4338051
什么是DOI,文献DOI怎么找? 2381778
邀请新用户注册赠送积分活动 1376865
关于科研通互助平台的介绍 1344153