FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐滑板发布了新的文献求助30
4秒前
5秒前
ZW完成签到,获得积分10
6秒前
zhangzhi发布了新的文献求助10
10秒前
qq完成签到 ,获得积分10
15秒前
我爱螺蛳粉完成签到 ,获得积分10
16秒前
段落落完成签到 ,获得积分10
19秒前
大个应助丛柳采纳,获得10
20秒前
dyk完成签到,获得积分10
21秒前
熙熙攘攘完成签到,获得积分10
24秒前
able完成签到 ,获得积分10
27秒前
纯真的雁山完成签到,获得积分10
34秒前
俭朴的玉兰完成签到 ,获得积分10
35秒前
roselin26完成签到,获得积分10
36秒前
朴实问筠完成签到 ,获得积分10
38秒前
drbrianlau完成签到,获得积分10
39秒前
42秒前
viogriffin完成签到,获得积分10
44秒前
Anonymous完成签到,获得积分10
51秒前
自觉的秋蝶完成签到,获得积分10
52秒前
l不哼唧菡完成签到,获得积分10
55秒前
guanguan完成签到,获得积分10
56秒前
米奇完成签到,获得积分20
1分钟前
小凤完成签到,获得积分20
1分钟前
1分钟前
机灵水卉完成签到 ,获得积分10
1分钟前
小凤发布了新的文献求助10
1分钟前
和谐诗柳完成签到 ,获得积分10
1分钟前
lucy完成签到,获得积分10
1分钟前
王王王发布了新的文献求助10
1分钟前
Mae完成签到 ,获得积分10
1分钟前
1分钟前
马季发布了新的文献求助10
1分钟前
轻松的雨竹完成签到 ,获得积分10
1分钟前
夜雨诗意完成签到,获得积分10
1分钟前
危机的慕卉完成签到 ,获得积分10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得30
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360203
求助须知:如何正确求助?哪些是违规求助? 2982713
关于积分的说明 8704770
捐赠科研通 2664517
什么是DOI,文献DOI怎么找? 1459100
科研通“疑难数据库(出版商)”最低求助积分说明 675400
邀请新用户注册赠送积分活动 666447