FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助陈某某采纳,获得10
刚刚
Owen应助yun采纳,获得10
1秒前
1秒前
11111发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
backerly完成签到,获得积分10
2秒前
2秒前
科研汪完成签到,获得积分10
2秒前
无敌小恐龙完成签到 ,获得积分10
3秒前
YYX完成签到,获得积分10
3秒前
科研通AI6应助寇博翔采纳,获得10
4秒前
Akim应助汉堡肉采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
yin发布了新的文献求助10
4秒前
篮球鞋发布了新的文献求助10
4秒前
刘指导完成签到,获得积分10
4秒前
周奕迅发布了新的文献求助10
5秒前
lz发布了新的文献求助10
5秒前
5秒前
ggg完成签到,获得积分10
5秒前
zychaos完成签到,获得积分10
6秒前
Sherwin完成签到,获得积分10
6秒前
oio778发布了新的文献求助10
6秒前
6秒前
6秒前
悦耳从彤完成签到,获得积分10
6秒前
Lucas应助善良的凡旋采纳,获得10
7秒前
moon完成签到,获得积分10
7秒前
7秒前
8秒前
追寻念云发布了新的文献求助10
8秒前
8秒前
勤奋努力完成签到 ,获得积分10
8秒前
等待的小鸽子完成签到 ,获得积分10
8秒前
慕青应助jin采纳,获得10
8秒前
8秒前
Hello应助LZH采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505532
求助须知:如何正确求助?哪些是违规求助? 4601172
关于积分的说明 14475722
捐赠科研通 4535228
什么是DOI,文献DOI怎么找? 2485237
邀请新用户注册赠送积分活动 1468262
关于科研通互助平台的介绍 1440718