FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气鹭洋发布了新的文献求助20
刚刚
1秒前
孙悦发布了新的文献求助10
1秒前
知性的绮兰完成签到,获得积分10
1秒前
1秒前
2秒前
Zzzoey完成签到,获得积分10
3秒前
3秒前
3秒前
英姑应助桂魄采纳,获得10
3秒前
3秒前
流北爷发布了新的文献求助10
4秒前
开心完成签到,获得积分10
4秒前
gguc发布了新的文献求助10
5秒前
万能图书馆应助okghy采纳,获得10
5秒前
5秒前
怕黑道消完成签到 ,获得积分10
5秒前
王小布完成签到,获得积分10
6秒前
石头发布了新的文献求助10
6秒前
楼下小白龙完成签到,获得积分10
6秒前
润润轩轩发布了新的文献求助10
6秒前
6秒前
Echo完成签到,获得积分10
7秒前
zmmmm发布了新的文献求助10
8秒前
雪山飞龙发布了新的文献求助30
8秒前
8秒前
Jenny应助小土豆采纳,获得50
8秒前
情怀应助布鲁鲁采纳,获得10
8秒前
8秒前
悦耳寒松发布了新的文献求助10
9秒前
9秒前
霍嘉文完成签到,获得积分10
9秒前
10秒前
bluesiryao发布了新的文献求助10
10秒前
李爱国应助23采纳,获得10
11秒前
11秒前
SHJ发布了新的文献求助10
11秒前
开心的幻柏完成签到 ,获得积分10
11秒前
大神完成签到 ,获得积分20
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794