FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刻苦映波发布了新的文献求助10
1秒前
不止发布了新的文献求助10
1秒前
1秒前
Owen应助liangmh采纳,获得10
1秒前
赘婿应助鳗鱼思真采纳,获得10
2秒前
2秒前
2秒前
majun发布了新的文献求助10
2秒前
2秒前
相金鹏完成签到,获得积分10
3秒前
3秒前
3秒前
二小完成签到 ,获得积分10
3秒前
Owen应助jasontian1990采纳,获得10
4秒前
青山发布了新的文献求助10
4秒前
帅气的方盒完成签到,获得积分10
4秒前
mmichaell发布了新的文献求助30
5秒前
zxj发布了新的文献求助10
6秒前
6秒前
怡然千琴发布了新的文献求助10
6秒前
啦啦啦完成签到 ,获得积分10
6秒前
泽锦臻发布了新的文献求助10
7秒前
王鑫发布了新的文献求助10
7秒前
恋恋青葡萄完成签到,获得积分10
7秒前
动听幻儿完成签到,获得积分10
8秒前
俊逸的康乃馨完成签到 ,获得积分10
8秒前
8秒前
受伤书文发布了新的文献求助10
8秒前
稳重一鸣发布了新的文献求助10
9秒前
喵了个咪完成签到 ,获得积分10
9秒前
majun完成签到,获得积分10
9秒前
森森呢完成签到 ,获得积分10
9秒前
酷波er应助Hina采纳,获得10
10秒前
伯赏雁蓉完成签到,获得积分10
10秒前
干净博涛完成签到 ,获得积分10
10秒前
10秒前
10秒前
kaiyuannnnnn完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594