FedSTS: A Stratified Client Selection Framework for Consistently Fast Federated Learning

选择(遗传算法) 计算机科学 分层抽样 联合学习 分布式计算 机器学习 统计 数学
作者
Dehong Gao,Duanxiao Song,Guangyuan Shen,Xiaoyan Cai,Libin Yang,Gongshen Liu,Xiaoyong Li,Zhen Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3438843
摘要

In this article, we investigate random client selection in the context of horizontal federated learning (FL), whereby only a randomly selected subset of clients transmit their model updates to the server instead of yielding all clients involved. Many researchers have demonstrated that clustering-based client selection constitutes a simple yet efficacious approach to the identification of those clients possessing representative gradient information. Despite the extensive body of research on modified selection methodologies, the majority of prior work is predicated upon the assumption of consistently effective clustering. However, raw gradient-based clustering methods are subject to several challenges: 1) poor effectiveness, the raw high-dimensional gradient of a client is too complex to serve as an appropriate feature for grouping, resulting in large intra-cluster distances and 2) fluctuating effectiveness, due to inherent limitations in clustering, the effectiveness can vary significantly, leading to clusters with diverse levels of heterogeneity. In practice, suboptimal and inconsistent clustering effects can result in clusters with low intra-cluster similarity among clients. The selection of clients from such clusters may impede the overall convergence of training. In this article, we propose, a novel client selection scheme to accelerate the FL convergence by variance reduction. The main idea of is to stratify a compressed model update in order to ensure an excellent grouping effect, and at the same time reduce the cross-client variance by re-allocating the sample chance among different groups based on their diverse heterogeneity. It strikes this convergence acceleration by paying more attention to those client groups with relatively low similarity and then improving the representativeness of the selected subset as much as possible. Theoretically, we demonstrate the critical improvement of the proposed scheme in variance reduction and present equivalence conditions among different client selection methods. We also present the tighter convergence guarantee of the proposed method thanks to the variance reduction. Experimental results confirm the exceeded efficiency of our approach compared to alternatives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
silence完成签到 ,获得积分10
2秒前
是真的宇航员啊完成签到,获得积分10
5秒前
mochalv123完成签到 ,获得积分10
28秒前
1分钟前
合适醉蝶完成签到 ,获得积分10
1分钟前
寒冷的月亮完成签到 ,获得积分10
1分钟前
俊逸的香萱完成签到 ,获得积分10
1分钟前
drtrapezus发布了新的文献求助10
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
wayne完成签到 ,获得积分10
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
1分钟前
坚定的小蘑菇完成签到 ,获得积分10
1分钟前
Alex发布了新的文献求助10
1分钟前
凡华完成签到 ,获得积分10
2分钟前
千空完成签到 ,获得积分10
2分钟前
Richard_Li完成签到,获得积分10
2分钟前
游01完成签到 ,获得积分10
2分钟前
drtrapezus完成签到,获得积分10
2分钟前
小小完成签到 ,获得积分10
2分钟前
又又完成签到,获得积分0
2分钟前
笨笨忘幽完成签到,获得积分0
3分钟前
CLTTT完成签到,获得积分0
3分钟前
CadoreK完成签到 ,获得积分10
3分钟前
afterglow完成签到 ,获得积分10
3分钟前
Dr-Luo完成签到 ,获得积分10
3分钟前
mark33442完成签到,获得积分10
3分钟前
shanyuyulai完成签到 ,获得积分10
3分钟前
Yuan完成签到 ,获得积分10
3分钟前
大个应助白华苍松采纳,获得10
4分钟前
高天雨完成签到 ,获得积分10
4分钟前
缥缈的觅风完成签到 ,获得积分10
4分钟前
jiaxvguo完成签到 ,获得积分10
5分钟前
5分钟前
蓝色花生豆完成签到,获得积分0
5分钟前
5分钟前
5分钟前
江三村完成签到 ,获得积分0
5分钟前
外向的芒果完成签到 ,获得积分10
5分钟前
从容猫咪发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689383
捐赠科研通 4591837
什么是DOI,文献DOI怎么找? 2519371
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118