Unlocking synergies of drawdown operation: Multi-objective optimization of reservoir emergency storage capacity

水位下降(水文) 环境科学 石油工程 废物管理 环境工程 工程类 地下水 含水层 岩土工程
作者
Shufei Li,Di Zhu,Fanqi Lin,Jun Xia,Yanlai Zhou,Fi‐John Chang,Chong‐Yu Xu
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:368: 122148-122148
标识
DOI:10.1016/j.jenvman.2024.122148
摘要

Optimizing reservoir drawdown operations holds significant implications for hydropower generation, water supply, and drought mitigation strategies. However, achieving multi-objective optimization in reservoir drawdown operations poses fundamental challenges, particularly considering emergency storage capacity and seasonal drought patterns. This study introduces a novel multi-objective optimization framework tailored for a mega reservoir, focusing on drawdown operations to enhance hydropower generation and water supply reliability. A drawdown operation model leveraging a multi-objective ant lion optimizer is developed to simultaneously maximize reservoir hydropower output and minimize water shortage rates. China's Three Gorges Reservoir (TGR), situated over the upper reaches of the Yangtze River, constitutes the case study, with the standard operation policy (SOP) serving as a benchmark. Results showcase the efficacy of the proposed method, with substantial improvements observed: a 10.6% increase in hydropower output, a 6.0% reduction in water shortage days, and a 9.5% decrease in minimal reservoir water release compared to SOP. This study provides robust technical and scientific bolster to optimize reservoir ESC and enhance the synergy between hydropower generation, water supply, and drought resilience. Additionally, it offers decision-makers actionable strategies that account for emergency water supply capacities. These strategies aim to support mega reservoir's resilience against extreme drought events facilitating the collaboration between modelers and policy-makers, by means of intelligent optimization and decision-making technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
化学位移值完成签到 ,获得积分10
1秒前
lili完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
小蘑菇应助笨笨采纳,获得10
3秒前
3秒前
4秒前
令狐双发布了新的文献求助10
4秒前
小西米发布了新的文献求助10
6秒前
sqmsust完成签到,获得积分10
6秒前
成功者完成签到,获得积分10
7秒前
33完成签到 ,获得积分10
7秒前
7秒前
8秒前
songjin发布了新的文献求助10
9秒前
9秒前
真实的秋蝶应助C_Cppp采纳,获得10
9秒前
Wayne发布了新的文献求助10
9秒前
keyanxiaobai完成签到,获得积分10
9秒前
10秒前
WW发布了新的文献求助10
11秒前
aldehyde应助一个小柠檬采纳,获得10
12秒前
满意芯发布了新的文献求助10
12秒前
YFH关闭了YFH文献求助
12秒前
13秒前
FF发布了新的文献求助30
13秒前
13秒前
搜集达人应助shimly0101xx采纳,获得10
15秒前
英俊的铭应助whuhustwit采纳,获得10
15秒前
penny发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
17秒前
Wayne完成签到,获得积分10
17秒前
17秒前
香蕉觅云应助Redamancy采纳,获得10
17秒前
栾小翔发布了新的文献求助30
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472