Improved Mn4+/Mn2+ Contribution in High‐Voltage Zn–MnO2 Batteries Enabled by an Al3+‐Ion Electrolyte

电解质 材料科学 电化学 插层(化学) 电池(电) 电容 离子 储能 电流密度 超级电容器 分析化学(期刊) 化学工程 电极 无机化学 物理化学 化学 热力学 物理 色谱法 量子力学 工程类 功率(物理) 有机化学
作者
Xingqi Chang,Jesús Chacón‐Borrero,Jian Ku Shang,Ke Xiao,Guillem Montaña‐Mora,Karol V. Mejia‐Centeno,Xuan Lu,Yajie Li,Jing Wang,Xiaolong Zhou,Sarayut Tunmee,Pinit Kidkhunthod,Changcai Cui,Junshan Li,Yongbing Tang,Paulina R. Martínez‐Alanis,Jordi Arbiol,Andreu Cabot
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202402584
摘要

Abstract Rechargeable aqueous Zn–MnO 2 batteries are attracting attention as a cost‐effective and safe energy storage solution, but their commercialization faces challenges due to limited stability, output voltage, and energy density. Herein, a hybrid‐ion Zn–MnO 2 system with enhanced Mn 4+ /Mn 2+ electrochemical contribution is introduced using an Al 3+ ‐based electrolyte. Compared with conventional Zn 2+ electrolytes, the hybrid Al 3+ /Zn 2+ cell offers higher output voltage of 1.75 V, capacities up to 469 mAh g −1 , and outstanding energy densities up to ≈730 Wh kg −1 at 0.3 A g −1 . Besides, the Al 3+ ‐enabled Zn–MnO 2 battery shows 100% capacity and energy density retention after 10,000 cycles at 2 A g −1 . Even at a high mass–loading of 6.2 mg cm −2 , a capacity of ≈200 mAh g −1 is maintained for over 100 cycles. This outstanding performance is related to the contribution of different intercalation and reaction mechanisms, as proved by the combination of electrochemical analysis and ex‐situ x ‐ray diffraction characterization of the cells at different discharge stages. Al 3+ ions, as Lewis strong acid, contribute to capacity in two significant ways: through a highly reversible intercalation/de‐intercalation that substantially boosts capacitance at low current rates, and promoting the Mn 4+ /Mn 2+ reaction aided by H + that dominates the capacitance at higher current rates. Overall, this work demonstrates a practical Zn–MnO 2 battery with a high potential for low‐cost stationary energy storage habilitated by multiple ion co‐intercalation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂花载酒关注了科研通微信公众号
3秒前
迷途发布了新的文献求助10
3秒前
小雨发布了新的文献求助10
5秒前
哒哒发布了新的文献求助10
5秒前
Doctor_Peng发布了新的文献求助10
8秒前
天玄完成签到,获得积分10
9秒前
11秒前
wang发布了新的文献求助10
11秒前
11秒前
兜兜发布了新的文献求助10
12秒前
12秒前
上官若男应助迷途采纳,获得10
13秒前
13秒前
14秒前
AlexLee完成签到,获得积分10
14秒前
枝枝完成签到 ,获得积分10
14秒前
15秒前
黄憨憨发布了新的文献求助10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
18秒前
空山新雨发布了新的文献求助10
19秒前
janarbek给wang的求助进行了留言
19秒前
今后应助搞怪书兰采纳,获得10
26秒前
26秒前
充电宝应助yao采纳,获得10
27秒前
33秒前
34秒前
37秒前
cjy发布了新的文献求助10
39秒前
GYX完成签到 ,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079