AI‐based R&D for frozen and thawed meat: Research progress and future prospects

计算机科学 持续性 个性化 质量(理念) 生产(经济) 业务 生物技术 生物 生态学 认识论 万维网 哲学 宏观经济学 经济
作者
Jiangshan Qiao,Min Zhang,Dayuan Wang,Arun S. Mujumdar,Chaoyang Chu
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:23 (5)
标识
DOI:10.1111/1541-4337.70016
摘要

Abstract Frozen and thawed meat plays an important role in stabilizing the meat supply chain and extending the shelf life of meat. However, traditional methods of research and development (R&D) struggle to meet rising demands for quality, nutritional value, innovation, safety, production efficiency, and sustainability. Frozen and thawed meat faces specific challenges, including quality degradation during thawing. Artificial intelligence (AI) has emerged as a promising solution to tackle these challenges in R&D of frozen and thawed meat. AI's capabilities in perception, judgment, and execution demonstrate significant potential in problem‐solving and task execution. This review outlines the architecture of applying AI technology to the R&D of frozen and thawed meat, aiming to make AI better implement and deliver solutions. In comparison to traditional R&D methods, the current research progress and promising application prospects of AI in this field are comprehensively summarized, focusing on its role in addressing key challenges such as rapid optimization of thawing process. AI has already demonstrated success in areas such as product development, production optimization, risk management, and quality control for frozen and thawed meat. In the future, AI‐based R&D for frozen and thawed meat will also play an important role in promoting personalization, intelligent production, and sustainable development. However, challenges remain, including the need for high‐quality data, complex implementation, volatile processes, and environmental considerations. To realize the full potential of AI that can be integrated into R&D of frozen and thawed meat, further research is needed to develop more robust and reliable AI solutions, such as general AI, explainable AI, and green AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
万花谷发布了新的文献求助10
3秒前
搜集达人应助emmm采纳,获得10
3秒前
一两风发布了新的文献求助10
3秒前
wwwwrrrrr发布了新的文献求助10
4秒前
yahage完成签到 ,获得积分10
5秒前
科研通AI5应助纸包鱼采纳,获得10
5秒前
dududu发布了新的文献求助10
5秒前
SICHEN应助令狐擎宇采纳,获得10
5秒前
dalian发布了新的文献求助10
5秒前
GJ发布了新的文献求助10
6秒前
6秒前
领导范儿应助Marita采纳,获得10
6秒前
7秒前
Jean应助非常可爱采纳,获得20
7秒前
小二郎应助CYL07采纳,获得10
7秒前
nihaoya172完成签到,获得积分10
7秒前
123完成签到 ,获得积分10
7秒前
王灿章发布了新的文献求助10
8秒前
9秒前
GGGirafe完成签到,获得积分10
9秒前
10秒前
11秒前
McQueen完成签到 ,获得积分10
11秒前
科目三应助wbh采纳,获得10
11秒前
11秒前
13秒前
加油发布了新的文献求助10
13秒前
赘婿应助天玄采纳,获得10
13秒前
脑洞疼应助刘康艺采纳,获得10
13秒前
一两风完成签到,获得积分20
13秒前
星辰大海应助luo采纳,获得30
14秒前
343386625发布了新的文献求助10
15秒前
dalian完成签到,获得积分10
15秒前
大个应助正在跳舞的猪采纳,获得10
16秒前
王佳琪发布了新的文献求助10
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760