Rapid counting of coliforms and Escherichia coli by deep learning‐based classifier

培养皿 大肠杆菌 显色的 人工智能 食品科学 分类器(UML) 生物 微生物学 计算机科学 化学 色谱法 生物化学 基因
作者
Rina Wakabayashi,Atsuko Aoyanagi,Tatsuya Tominaga
出处
期刊:Journal of Food Safety [Wiley]
卷期号:44 (4) 被引量:1
标识
DOI:10.1111/jfs.13158
摘要

Abstract To ensure that food has been handled hygienically, manufacturers routinely examine the numbers of indicator bacteria, such as coliforms and Escherichia coli . Using the deep‐learning algorithm YOLO, we developed a classifier that automatically counts the number of coliforms (red colonies) and E. coli (blue colonies) on a chromogenic agar plate. Using Citrobacter freundii IAM 12471 T and E. coli NBRC 3301, we trained our YOLO‐based classifier with images of Petri dishes grown with each strain alone (10 images) and/or with a mixture of both strains (5 images). When the performance of the classifier was evaluated using 83 images, the accuracy rates for coliforms and E. coli reached 99.4% and 99.5%, respectively. We then investigated whether this classifier could detect other, non‐trained coliform species (22 species) and E. coli strains (13 strains). The accuracy rates for coliforms and E. coli were 98.7% (90 Petri dishes) and 94.1% (46 Petri dishes), respectively. Furthermore, we verified the practical feasibility of the developed classifier using 38 meats (chicken, pork, and beef). The accuracy rates for coliforms and E. coli in meat isolates were 98.8% (80 Petri dishes) and 93.8% (35 Petri dishes), respectively. The time required to count coliforms/ E. coli on a single plate was ~70 ms. This novel method should enable users to rapidly quantify coliforms/ E. coli without relying on a human inspector's color vision, leading to improved assurance of food safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘发布了新的文献求助10
1秒前
赘婿应助ZTT采纳,获得10
1秒前
草莓小酒完成签到,获得积分10
1秒前
He完成签到 ,获得积分10
2秒前
3秒前
goldenrod完成签到,获得积分10
4秒前
4秒前
5秒前
花开那年完成签到 ,获得积分10
5秒前
5秒前
6秒前
阔达水之完成签到,获得积分10
6秒前
bierbia完成签到,获得积分10
6秒前
8秒前
老西瓜发布了新的文献求助10
8秒前
9秒前
闪闪凡波完成签到,获得积分10
9秒前
求学发布了新的文献求助10
9秒前
10秒前
内向沛槐发布了新的文献求助10
10秒前
11秒前
11秒前
ZTT发布了新的文献求助10
13秒前
15秒前
hbb发布了新的文献求助10
15秒前
luoshikun发布了新的文献求助10
16秒前
GGGGEEEE应助科研小卡拉米采纳,获得10
18秒前
简单的丑完成签到,获得积分10
19秒前
ZTT完成签到,获得积分10
19秒前
光电效应完成签到,获得积分10
20秒前
Jie发布了新的文献求助10
21秒前
森林不见养鹿人完成签到,获得积分20
22秒前
wanci应助zheng采纳,获得20
22秒前
22秒前
23秒前
稳重紫蓝完成签到 ,获得积分10
24秒前
萧a完成签到,获得积分10
25秒前
27秒前
爱听歌的紫菜完成签到,获得积分10
28秒前
路之遥兮发布了新的文献求助10
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267533
求助须知:如何正确求助?哪些是违规求助? 2906952
关于积分的说明 8340251
捐赠科研通 2577550
什么是DOI,文献DOI怎么找? 1401125
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633967