A novel hybrid GNSS, GRACE, and InSAR joint inversion approach to constrain water loss during a record-setting drought in California

干涉合成孔径雷达 地质学 地下水 大地基准 含水层 合成孔径雷达 全球导航卫星系统应用 反演(地质) 孔力学 遥感 大地测量学 卫星 地震学 构造学 岩土工程 工程类 多孔介质 航空航天工程 多孔性
作者
Grace Carlson,Susanna Werth,Manoochehr Shirzaei
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:311: 114303-114303 被引量:3
标识
DOI:10.1016/j.rse.2024.114303
摘要

Water years 2020 and 2021 in California were two of the driest on record and the most recent series of dry years during a two-decade-long mega-drought. The 2020–2021 drought period, characterized by low precipitation and high temperatures, had devastating effects, including an increase in ongoing groundwater overdraft, manifesting in rapid subsidence in California's Central Valley. Here, we present a unified hybrid physics-based stochastic model incorporating measurements from three geodetic sensors to produce a high-resolution map of terrestrial water storage change (∆TWS) across California during the 2020–2021 dry years. The novel joint inversion framework combines Global Navigation Satellite System (GNSS) elastic vertical displacements, ∆TWS from the Gravity Recovery and Climate Experiment Satellites (GRACE and the follow-on mission, GRACE-FO) and Interferometric Synthetic Aperture Radar (InSAR) measurements of poroelastic deformation through a model comprising elastic loading and poroelastic Green's functions. This framework yields a high-resolution and more realistic estimate of ∆TWS within the Central Valley and the surrounding mountain ranges by accounting for poroelastic aquifer deformation. Besides the total ∆TWS, our novel inversion framework simultaneously solves the change in groundwater storage and is used to produce a high-resolution map of groundwater storage loss across the Central Valley. We calculate a groundwater volume loss of 20.4+/− 2.6 km3 in the semi-confined to confined portion of the aquifer-system, with the largest groundwater volume loss in the southern Central Valley over the two dry years. We show that groundwater loss estimates found using our joint inversion framework agree with results from a conventional approach for GRACE-FO-derived groundwater loss estimates when considering underlying processes and uncertainties. Finally, we compare shallow groundwater storage change estimates with those derived from in-situ groundwater level measurements in the Sacramento Valley.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不喝可乐发布了新的文献求助10
刚刚
freedommm发布了新的文献求助10
刚刚
充电宝应助读书采纳,获得10
刚刚
星期五完成签到,获得积分10
1秒前
Raskolnikov完成签到,获得积分20
1秒前
six完成签到,获得积分10
1秒前
2秒前
pka发布了新的文献求助10
3秒前
简单一兰完成签到,获得积分20
3秒前
科研通AI5应助拥抱最重要采纳,获得10
3秒前
科研通AI5应助小龅牙吖采纳,获得10
3秒前
4秒前
4秒前
飘逸访文完成签到,获得积分10
5秒前
直率的宛海完成签到,获得积分10
5秒前
开心小小完成签到,获得积分10
5秒前
5秒前
wy.he给咕咕的鸽子的求助进行了留言
5秒前
ironsilica发布了新的文献求助10
5秒前
dopamine完成签到,获得积分10
5秒前
6秒前
6秒前
shin0324发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
研友_VZG7GZ应助阿巴阿巴采纳,获得10
9秒前
朝晖夕阴完成签到,获得积分10
9秒前
蕾蕾发布了新的文献求助30
9秒前
wanci应助江屿采纳,获得10
9秒前
10秒前
酷炫的八宝粥完成签到,获得积分10
10秒前
10秒前
在水一方应助成环醚采纳,获得10
11秒前
斯文败类应助绝尘采纳,获得10
11秒前
iking666发布了新的文献求助10
11秒前
烟花应助114514采纳,获得10
11秒前
科研通AI5应助HJJHJH采纳,获得10
12秒前
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400