Research on the state of areas in Ukraine affected by military actions based on remote sensing data and deep learning architectures

计算机科学 卷积神经网络 背景(考古学) 深度学习 多光谱图像 合成孔径雷达 遥感 人工智能 分割 卫星图像 数据科学 地理 考古
作者
Yurii Pushkarenko,Volodymyr Zaslavskyi
出处
期刊:Radìoelektronnì ì komp'ûternì sistemi [National Aerospace University - Kharkiv Aviation Institute]
卷期号:2024 (2): 5-18
标识
DOI:10.32620/reks.2024.2.01
摘要

The invasion of Ukraine by the Russian Federation and the escalation of military actions in the regions have led to significant damage to residential buildings, civilian infrastructure, various critical infrastructure objects, dams, and extensive pollution of the territories. In this context, the tasks of remote sensing using satellite imagery and aerial observation arise to analyze the impact and conduct an economic assessment of damage in these areas. This work investigates and employs deep neural network (DNNs) models in computer vision (CV) tasks (classification, segmentation) and combines their derivatives, such as convolutional networks (CNNs) and vision transformer models (ViTs), to enhance the accuracy of damage assessment. ViTs have demonstrated significant success, often surpassing traditional CNNs, and have potential applications in remote sensing for damage assessment and the protection of critical infrastructure. The research conducted in this work confirms the importance of applying such technologies in environments where labeled data are rare or non-existent, particularly evaluating the use of DNNs, including CNNs and ViTs, in analyzing regions affected by military actions using synthetic aperture radar (SAR) and multispectral images. The aim and subject of this research also include reviewing the possibilities of combining CNNs and ViTs to improve the speed of image feature extraction, landscape detection, and the detection of complex structural contours of objects, where data are usually insufficient. The results of this study provide a critical review of the application of CNNs and ViTs in remote sensing, identifying significant gaps and challenges, especially in the context of the economic consequences of destruction due to military actions. The technical aspects of using CNNs and transformer-based models for complex CV tasks and transfer learning under data-scarce conditions, as well as the challenges in analyzing large volumes of geophysical data, are considered. The conclusions emphasize the transformational potential of DNNs, especially transformers, in remote sensing under conflict and disaster conditions. Their adaptability and accuracy in various environments underscore their utility in both strategic military and humanitarian contexts, establishing a practical standard for their application in key real, real-world scenario-based territory condition assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinen完成签到,获得积分10
刚刚
婷杰发布了新的文献求助10
1秒前
1秒前
odin123发布了新的文献求助10
1秒前
huhutu完成签到,获得积分10
2秒前
欣慰的盼芙完成签到 ,获得积分10
2秒前
lm发布了新的文献求助10
2秒前
124cndhaP完成签到,获得积分10
2秒前
金子发布了新的文献求助10
2秒前
快乐的伟诚完成签到,获得积分10
3秒前
一顿吃不饱完成签到,获得积分0
3秒前
超帅凡阳发布了新的文献求助10
4秒前
Zard完成签到,获得积分10
4秒前
常大有完成签到,获得积分10
4秒前
SYLH应助桀桀桀采纳,获得10
5秒前
5秒前
冷艳宛白完成签到,获得积分10
5秒前
6秒前
zyzhnu完成签到,获得积分10
6秒前
椰丝yes完成签到,获得积分10
7秒前
小林太郎应助aodilee采纳,获得50
7秒前
无限的数据线完成签到,获得积分10
7秒前
毛小驴完成签到,获得积分10
7秒前
lucky发布了新的文献求助10
8秒前
11111111发布了新的文献求助20
9秒前
9秒前
my123完成签到,获得积分10
10秒前
10秒前
Aug发布了新的文献求助10
11秒前
干旱半干旱你完成签到,获得积分10
12秒前
舒服的踏歌完成签到,获得积分10
12秒前
wualexandra完成签到,获得积分10
12秒前
落忆完成签到 ,获得积分10
12秒前
有魅力向珊完成签到,获得积分10
13秒前
椰丝yes发布了新的文献求助10
13秒前
13秒前
舒适的梦凡完成签到 ,获得积分10
14秒前
野性的元容完成签到,获得积分10
14秒前
duoduozs完成签到,获得积分10
14秒前
了晨完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516743
求助须知:如何正确求助?哪些是违规求助? 3098937
关于积分的说明 9242286
捐赠科研通 2794238
什么是DOI,文献DOI怎么找? 1533348
邀请新用户注册赠送积分活动 712710
科研通“疑难数据库(出版商)”最低求助积分说明 707417