Research on the state of areas in Ukraine affected by military actions based on remote sensing data and deep learning architectures

计算机科学 卷积神经网络 背景(考古学) 深度学习 多光谱图像 合成孔径雷达 遥感 人工智能 分割 卫星图像 数据科学 地理 考古
作者
Yurii Pushkarenko,Volodymyr Zaslavskyi
出处
期刊:Radìoelektronnì ì komp'ûternì sistemi [National Aerospace University – Kharkiv Aviation Institute]
卷期号:2024 (2): 5-18
标识
DOI:10.32620/reks.2024.2.01
摘要

The invasion of Ukraine by the Russian Federation and the escalation of military actions in the regions have led to significant damage to residential buildings, civilian infrastructure, various critical infrastructure objects, dams, and extensive pollution of the territories. In this context, the tasks of remote sensing using satellite imagery and aerial observation arise to analyze the impact and conduct an economic assessment of damage in these areas. This work investigates and employs deep neural network (DNNs) models in computer vision (CV) tasks (classification, segmentation) and combines their derivatives, such as convolutional networks (CNNs) and vision transformer models (ViTs), to enhance the accuracy of damage assessment. ViTs have demonstrated significant success, often surpassing traditional CNNs, and have potential applications in remote sensing for damage assessment and the protection of critical infrastructure. The research conducted in this work confirms the importance of applying such technologies in environments where labeled data are rare or non-existent, particularly evaluating the use of DNNs, including CNNs and ViTs, in analyzing regions affected by military actions using synthetic aperture radar (SAR) and multispectral images. The aim and subject of this research also include reviewing the possibilities of combining CNNs and ViTs to improve the speed of image feature extraction, landscape detection, and the detection of complex structural contours of objects, where data are usually insufficient. The results of this study provide a critical review of the application of CNNs and ViTs in remote sensing, identifying significant gaps and challenges, especially in the context of the economic consequences of destruction due to military actions. The technical aspects of using CNNs and transformer-based models for complex CV tasks and transfer learning under data-scarce conditions, as well as the challenges in analyzing large volumes of geophysical data, are considered. The conclusions emphasize the transformational potential of DNNs, especially transformers, in remote sensing under conflict and disaster conditions. Their adaptability and accuracy in various environments underscore their utility in both strategic military and humanitarian contexts, establishing a practical standard for their application in key real, real-world scenario-based territory condition assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
renaissance完成签到 ,获得积分10
1秒前
小范发布了新的文献求助10
1秒前
RenatoCai完成签到 ,获得积分10
1秒前
2秒前
syhjxk发布了新的文献求助10
2秒前
谭访冬完成签到,获得积分10
2秒前
科研通AI5应助烂漫夜梅采纳,获得10
2秒前
乐观的颦发布了新的文献求助10
3秒前
科研通AI5应助Nanpasen采纳,获得10
4秒前
666完成签到,获得积分10
4秒前
upward发布了新的文献求助10
4秒前
谭访冬发布了新的文献求助10
5秒前
李健的小迷弟应助张可采纳,获得10
5秒前
5秒前
5秒前
biubiubiu发布了新的文献求助10
6秒前
小熵发布了新的文献求助10
7秒前
Whim应助111采纳,获得30
8秒前
甜菜完成签到,获得积分10
9秒前
10秒前
汉堡包应助中原采纳,获得10
10秒前
呆呆熊发布了新的文献求助30
10秒前
羊踯躅完成签到,获得积分10
11秒前
hf发布了新的文献求助10
11秒前
1TWE完成签到 ,获得积分10
11秒前
所所应助biubiubiu采纳,获得10
13秒前
传奇3应助起风了采纳,获得10
13秒前
13秒前
14秒前
14秒前
星辰发布了新的文献求助10
15秒前
中原完成签到,获得积分10
16秒前
16秒前
罗明芳发布了新的文献求助10
16秒前
CodeCraft应助猫抓板采纳,获得10
17秒前
17秒前
bocky完成签到 ,获得积分10
18秒前
18秒前
涣醒发布了新的文献求助10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427