Severity of metabolic derangement predicts survival after out-of-hospital cardiac arrest and the likelihood of benefiting from extracorporeal life support

医学 体外 生命维持 重症监护医学 急诊医学 内科学
作者
Daun Jeong,Gun Tak Lee,Jong Eun Park,Sung Yeon Hwang,Tae Gun Shin,Sang Do Shin,Jin‐Ho Choi
出处
期刊:Emergencias
标识
DOI:10.55633/s3me/093.2024
摘要

To develop a Metabolic Derangement Score (MDS) based on parameters available after initial testing and assess the score's ability to predict survival after out-of hospital cardiac arrest (OHCA) and the likely usefulness of extracorporeal life support (ECLS). A total of 5100 cases in the Korean Cardiac Arrest Research Consortium registry were included. Patients' mean age was 67 years, and 69% were men. Findings from initial tests (pH; PaCO2; PaO2; and potassium, hemoglobin, lactate, and creatinine levels) were extracted from the registry. The primary composite outcome was death or poor neurologic outcome (Cerebral Performance Category Scale, $ 3) at 30 days. We developed the model for the MDS using automated machine learning algorithms in a development cohort (60% of the patients) and tested it in a validation cohort (40%). Risk for the primary outcome increased by 34% as the MDS rose from 0 to 7 in the test cohort. Patients with scores of 2 or lower had no increased risk for the outcome according to whether ECLS had been used or not. However, ECLS patients with a score of 3 or more did have lower risk for the outcome, based on a restricted mean survival time of 6.5 days and a ratio of restricted mean time lost of 0.76; P .001, both comparisons). Registered test results were consistent between patients who did or did not receive ECLS. The MDS predicted the composite outcome better than the OHCA, Cardiac Arrest Hospital Prognosis, and NULL-PLEASE scores (P .05). The MDS we developed predicts prognosis in patients with OHCA and identifies patients who could benefit from ECLS.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汤丽霞完成签到 ,获得积分10
2秒前
Yvan完成签到,获得积分10
3秒前
勤奋的灯完成签到 ,获得积分10
3秒前
6秒前
自由的云发布了新的文献求助10
9秒前
zheng完成签到 ,获得积分10
12秒前
八硝基立方烷完成签到,获得积分0
13秒前
Jason完成签到 ,获得积分10
13秒前
南风完成签到,获得积分0
14秒前
rorolinlin完成签到,获得积分10
15秒前
16秒前
lu完成签到,获得积分10
16秒前
诸觅双完成签到 ,获得积分10
17秒前
呆萌的小海豚完成签到,获得积分10
18秒前
byby完成签到,获得积分10
23秒前
无脚鸟完成签到,获得积分10
26秒前
韭黄完成签到,获得积分20
28秒前
YY完成签到 ,获得积分10
28秒前
夜雨诗意完成签到,获得积分10
29秒前
荼蘼如雪发布了新的文献求助10
31秒前
小墨墨完成签到 ,获得积分10
32秒前
34秒前
znn完成签到 ,获得积分10
34秒前
duanhuiyuan举报日月同错求助涉嫌违规
35秒前
刘三哥完成签到 ,获得积分10
37秒前
Keyuuu30完成签到,获得积分0
38秒前
NING发布了新的文献求助10
39秒前
shuangfeng1853完成签到 ,获得积分10
39秒前
不吃了完成签到 ,获得积分10
39秒前
迷路迎南完成签到 ,获得积分10
40秒前
万能图书馆应助cy采纳,获得10
40秒前
韭菜完成签到,获得积分20
40秒前
chuhong完成签到 ,获得积分10
40秒前
文心同学完成签到,获得积分10
40秒前
领导范儿应助鬼见愁采纳,获得20
41秒前
41秒前
HuFan1201完成签到 ,获得积分10
42秒前
执着的采枫完成签到 ,获得积分10
43秒前
可爱的石头完成签到,获得积分10
43秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413420
求助须知:如何正确求助?哪些是违规求助? 3015808
关于积分的说明 8871838
捐赠科研通 2703519
什么是DOI,文献DOI怎么找? 1482357
科研通“疑难数据库(出版商)”最低求助积分说明 685233
邀请新用户注册赠送积分活动 679970